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Abstract. As popularity of algebraic effects and handlers increases, so does
a demand for their efficient execution. Eff, an ML-like language with native
support for handlers, has a subtyping-based effect system on which an effect-
aware optimizing compiler could be built. Unfortunately, in our experience,
implementing optimizations for Eff is overly error-prone because its core
language is implicitly-typed, making code transformations very fragile.
To remedy this, we present an explicitly-typed polymorphic core calculus for
algebraic effect handlers with a subtyping-based type-and-effect system. It
reifies appeals to subtyping in explicit casts with coercions that witness the
subtyping proof, quickly exposing typing bugs in program transformations.
Our typing-directed elaboration comes with a constraint-based inference al-
gorithm that turns an implicitly-typed Eff-like language into our calculus.
Moreover, all coercions and effect information can be erased in a straight-
forward way, demonstrating that coercions have no computational content.

1 Introduction

Algebraic effect handlers [17, 18] are quickly maturing from a theoretical model to
a practical language feature for user-defined computational effects. Yet, in practice
they still incur a significant performance overhead compared to native effects.

Our earlier efforts [22] to narrow this gap with an optimising compiler from Eff [2]
to OCaml showed promising results, in some cases reaching even the performance of
hand-tuned code, but were very fragile and have been postponed until a more robust
solution is found. We believe the main reason behind this fragility is the complexity
of subtyping in combination with the implicit typing of Eff’s core language, further
aggravated by the “garbage collection” of subtyping constraints (see Section 7).3

For efficient compilation, one must avoid the poisoning problem [26], where
unification forces a pure computation to take the less precise impure type of the
context (e.g. a pure and an impure branch of a conditional both receive the same
impure type). Since this rules out existing (and likely simpler) effect systems for
handlers based on row-polymorphism [12, 8, 14], we propose a polymorphic explicitly-
typed calculus based on subtyping. More specifically, our contributions are as follows:

– First, in Section 3 we present ImpEff, a polymorphic implicitly-typed calculus
for algebraic effects and handlers with a subtyping-based type-and-effect system.

3 For other issues stemming from the same combination see issues #11 and #16 at
https://github.com/matijapretnar/eff/issues/.
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ImpEff is essentially a (desugared) source language as it appears in the compiler
frontend of a language like Eff.

– Next, Section 4 presents ExEff, the core calculus, which combines explicit
System F-style polymorphism with explicit coercions for subtyping in the style
of Breazu-Tannen et al. [3]. This calculus comes with a type-and-effect system,
a small-step operational semantics and a proof of type-safety.

– Section 5 specifies the typing-directed elaboration of ImpEff into ExEff and
presents a type inference algorithm for ImpEff that produces the elaborated
ExEff term as a by-product. It also establishes that the elaboration preserves
typing, and that the algorithm is sound with respect to the specification and
yields principal types.

– Finally, Section 6 defines SkelEff, which is a variant of ExEff without effect
information or coercions. SkelEff is also representative of Multicore Ocaml’s
support for algebraic effects and handlers [6], which is a possible compilation
target of Eff. By showing that the erasure from ExEff to SkelEff preserves
semantics, we establish that ExEff’s coercions are computationally irrelevant
and that, despite the existence of multiple proofs for the same subtyping, there is
no coherence problem. To enable erasure, ExEff annotates its types with (type)
skeletons, which capture the erased counterpart and are, to our knowledge, a
novel contribution.

– Our paper comes with two software artefacts: an ongoing implementation4 of a
compiler from Eff to OCaml with ExEff at its core, and an Abella mechanisa-
tion5 of Theorems 1, 2, 6, and 7. Remaining theorems all concern the inference
algorithm, and their proofs closely follow [20].

The full version of this paper includes an appendix with omitted figures and can be
found at http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW711.abs.html.

2 Overview

This section presents an informal overview of the ExEff calculus, and the main
issues with elaborating to and erasing from it.

2.1 Algebraic Effect Handlers

The main premise of algebraic effects is that impure behaviour arises from a set of
operations such as Get and Set for mutable store, Read and Print for interactive
input and output, or Raise for exceptions [17]. This allows generalizing exception
handlers to other effects, to express backtracking, co-operative multithreading and
other examples in a natural way [18, 2].

Assume operations Tick : Unit → Unit and Tock : Unit → Unit that take a
unit value as a parameter and yield a unit value as a result. Unlike special built-in
operations, these operations have no intrinsic effectful behaviour, though we can give

4 https://github.com/matijapretnar/eff/tree/explicit-effect-subtyping
5 https://github.com/matijapretnar/proofs/tree/master/explicit-effect-subtyping
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one through handlers. For example, the handler {Tickx k 7→ (Print“tick”; k unit),
Tockx k 7→ Print“tock”} replaces all calls of Tick by printing out “tick” and sim-
ilarly for Tock. But there is one significant difference between the two cases. Unlike
exceptions, which always abort the evaluation, operations have a continuation wait-
ing for their result. It is this continuation that the handler captures in the variable k
and potentially uses in the handling clause. In the clause for Tick, the continuation
is resumed by passing it the expected unit value, whereas in the clause for Tock, the
operation is discarded. Thus, if we handle a computation emitting the two opera-
tions, it will print out “tick” until a first “tock” is printed, after which the evaluation
stops.

2.2 Elaborating Subtyping

Consider the computation do x ← Tick unit; f x and assume that f has the
function type Unit→ Unit ! {Tock}, taking unit values to unit values and perhaps
calling Tock operations in the process. The whole computation then has the type
Unit ! {Tick, Tock} as it returns the unit value and may call Tick and Tock.

The above typing implicitly appeals to subtyping in several places. For instance,
Tick unit has type Unit ! {Tick} and f x type Unit ! {Tock}. Yet, because
they are sequenced with do, the type system expects they have the same set of
effects. The discrepancies are implicitly reconciled by the subtyping which admits
both {Tick} 6 {Tick, Tock} and {Tock} 6 {Tick, Tock}.

We elaborate the ImpEff term into the explicitly-typed core language ExEff
to make those appeals to subtyping explicit by means of casts with coercions:

do x← ((Tick unit) B γ1); (f x) B γ2

A coercion γ is a witness for a subtyping A ! ∆ 6 A′ ! ∆′ and can be used to
cast a term c of type A ! ∆ to a term c B γ of type A′ ! ∆′. In the above
term, γ1 and γ2 respectively witness Unit ! {Tick} 6 Unit ! {Tick, Tock} and
Unit ! {Tock} 6 Unit ! {Tick, Tock}.

2.3 Polymorphic Subtyping for Types and Effects

The above basic example only features monomorphic types and effects. Yet, our
calculus also supports polymorphism, which makes it considerably more expressive.
For instance the type of f in let f = (fun g 7→ g unit) in . . . is generalised to:

∀α, α′.∀δ, δ′.α 6 α′ ⇒ δ 6 δ′ ⇒ (Unit→ α ! δ)→ α′ ! δ′

This polymorphic type scheme follows the qualified types convention [9] where the
type (Unit→ α ! δ)→ α′ ! δ′ is subjected to several qualifiers, in this case α 6 α′

and δ 6 δ′. The universal quantifiers on the outside bind the type variables α and
α′, and the effect set variables δ and δ′.

The elaboration of f into ExEff introduces explicit binders for both the quan-
tifiers and the qualifiers, as well as the explicit casts where subtyping is used.

Λα.Λα′.Λδ.Λδ′.Λ(ω :α 6 α′).Λ(ω′ :δ 6 δ′).fun (g :Unit→ α ! δ) 7→(g unit)B(ω !ω′)
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Here the binders for qualifiers introduce coercion variables ω between pure types and
ω′ between operation sets, which are then combined into a computation coercion
ω ! ω′ and used for casting the function application g unit to the expected type.

Suppose that h has type Unit→ Unit ! {Tick} and f h type Unit ! {Tick, Tock}.
In the ExEff calculus the corresponding instantiation of f is made explicit through
type and coercion applications

f Unit Unit {Tick} {Tick, Tock} γ1 γ2 h

where γ1 needs to be a witness for Unit 6 Unit and γ2 for {Tick} 6 {Tick, Tock}.

2.4 Guaranteed Erasure with Skeletons

One of our main requirements for ExEff is that its effect information and subtyping
can be easily erased. The reason is twofold. Firstly, we want to show that neither plays
a role in the runtime behaviour of ExEff programs. Secondly and more importantly,
we want to use a conventionally typed (System F-like) functional language as a
backend for the Eff compiler.

At first, erasure of both effect information and subtyping seems easy: simply
drop that information from types and terms. But by dropping the effect variables
and subtyping constraints from the type of f , we get ∀α, α′.(Unit → α) → α′

instead of the expected type ∀α.(Unit → α) → α. In our naive erasure attempt
we have carelessly discarded the connection between α and α′. A more appropriate
approach to erasure would be to unify the types in dropped subtyping constraints.
However, unifying types may reduce the number of type variables when they become
instantiated, so corresponding binders need to be dropped, greatly complicating the
erasure procedure and its meta-theory.

Fortunately, there is an easier way by tagging all bound type variables with
skeletons, which are barebone types without effect information. For example, the
skeleton of a function type A→ B ! ∆ is τ1 → τ2, where τ1 is the skeleton of A and
τ2 the skeleton of B. In ExEff every well-formed type has an associated skeleton,
and any two types A1 6 A2 share the same skeleton. In particular, binders for type
variables are explicitly annotated with skeleton variables ς. For instance, the actual
type of f is:

∀ς.∀(α : ς), (α′ : ς).∀δ, δ′.α 6 α′ ⇒ δ 6 δ′ ⇒ (Unit→ α ! δ)→ α′ ! δ′

The skeleton quantifications and annotations also appear at the term-level:

Λς.Λ(α : ς).Λ(α′ : ς).Λδ.Λδ′.Λ(ω : α 6 α′).Λ(ω′ : δ 6 δ′). . . .

Now erasure is really easy: we drop not only effect and subtyping-related term for-
mers, but also type binders and application. We do retain skeleton binders and
applications, which take over the role of (plain) types in the backend language. In
terms, we replace types by their skeletons. For instance, for f we get:

Λς.fun (g : Unit→ ς) 7→ g unit : ∀ς.(Unit→ ς)→ ς
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Terms

value v ::= x | unit | fun x 7→ c | h
handler h ::= {return x 7→ cr, Op1 x k 7→ cOp1 , . . . , Opn x k 7→ cOpn}

computation c ::= return v | Op v (y.c) | do x← c1; c2
| handle c with v | v1 v2 | let x = v in c

Types & Constraints

skeleton τ ::= ς | Unit | τ1 → τ2 | τ1 V τ2

value type A,B ::= α | Unit | A→ C | C V D
qualified type K ::= A | π ⇒ K

polytype S ::= K | ∀ς.S | ∀α :τ.S | ∀δ.S
computation type C ,D ::= A !∆

dirt ∆ ::= δ | ∅ | {Op} ∪∆

simple constraint π ::= A1 6 A2 | ∆1 6 ∆2

constraint ρ ::= π | C 6 D

Fig. 1: ImpEff Syntax

3 The ImpEff Language

This section presents ImpEff, a basic functional calculus with support for algebraic
effect handlers, which forms the core language of our optimising compiler. We de-
scribe the relevant concepts, but refer the reader to Pretnar’s tutorial [21], which
explains essentially the same calculus in more detail.

3.1 Syntax

Figure 1 presents the syntax of the source language. There are two main kinds of
terms: (pure) values v and (dirty) computations c, which may call effectful opera-
tions. Handlers h are a subsidiary sort of values. We assume a given set of opera-
tions Op, such as Get and Put. We abbreviate Op1 x k 7→ cOp1 , . . . , Opn x k 7→ cOpn
as [Opx k 7→ cOp]Op∈O, and write O to denote the set {Op1, . . . , Opn}.

Similarly, we distinguish between two basic sorts of types: the value types A,B
and the computation types C,D. There are four forms of value types: type variables
α, function types A → C, handler types C V D and the Unit type. Skeletons τ
capture the shape of types, so, by design, their forms are identical. The computation
type A ! ∆ is assigned to a computation returning values of type A and potentially
calling operations from the dirt set ∆. A dirt set contains zero or more operations Op
and is terminated either by an empty set or a dirt variable δ. Though we use cons-list
syntax, the intended semantics of dirt sets ∆ is that the order of operations Op is
irrelevant. Similarly to all HM-based systems, we discriminate between value types
(or monotypes) A, qualified types K and polytypes (or type schemes) S . (Simple)
subtyping constraints π denote inequalities between either value types or dirts. We
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also present the more general form of constraints ρ that includes inequalities between
computation types (as we illustrate in Section 3.2 below, this allows for a single,
uniform constraint entailment relation). Finally, polytypes consist of zero or more
skeleton, type or dirt abstractions followed by a qualified type.

3.2 Typing

Figure 2 presents the typing rules for values and computations, along with a typing-
directed elaboration into our target language ExEff. In order to simplify the pre-
sentation, in this section we focus exclusively on typing. The parts of the rules that
concern elaboration are highlighted in gray and are discussed in Section 5.

Values Typing for values takes the form Γ `v v : A v′ , and, given a typing
environment Γ , checks a value v against a value type A.

Rule TmVar handles term variables. Given that x has type (∀ς.α : τ .∀δ.π ⇒ A),
we appropriately instantiate the skeleton (ς), type (α), and dirt (δ) variables, and
ensure that the instantiated wanted constraints σ(π) are satisfied, via side condition
Γ c̀o γ : σ(π). Rule TmCastV allows casting the type of a value v from A to B , if A
is a subtype of B (upcasting). As illustrated by Rule TmTmAbs, we omit freshness
conditions by adopting the Barendregt convention [1]. Finally, Rule TmHand gives
typing for handlers. It requires that the right-hand sides of the return clause and all
operation clauses have the same computation type (B !∆), and that all operations
mentioned are part of the top-level signature Σ.6 The result type takes the form
A ! ∆∪O V B ! ∆, capturing the intended handler semantics: given a computation
of type A ! ∆∪O, the handler (a) produces a result of type B , (b) handles operations
O, and (c) propagates unhandled operations ∆ to the output.

Computations Typing for computations takes the form Γ `c c : C  c′ , and,
given a typing environment Γ , checks a computation c against a type C.

Rule TmCastC behaves like Rule TmCastV, but for computation types.
Rule TmLet handles polymorphic, non-recursive let-bindings. Rule TmReturn
handles return v computations. Keyword return effectively lifts a value v of type
A into a computation of type A ! ∅. Rule TmOp checks operation calls. First, we
ensure that v has the appropriate type, as specified by the signature of Op. Then,
the continuation (y.c) is checked. The side condition Op ∈ ∆ ensures that the called
operation Op is captured in the result type. Rule TmDo handles sequencing. Given
that c1 has type A !∆, the pure part of the result of type A is bound to term variable
x, which is brought in scope for checking c2. As we mentioned in Section 2, all com-
putations in a do-construct should have the same effect set, ∆. Rule TmHandle
eliminates handler types, just as Rule TmTmApp eliminates arrow types.

Constraint Entailment The specification of constraint entailment takes the form
Γ c̀o γ : ρ and is presented in Figure 3. Notice that we use ρ instead of π, which

6 We capture all defined operations along with their types in a global signature Σ.
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typing environment Γ ::= ε | Γ, ς | Γ, α : τ | Γ, δ | Γ, x : S | Γ, ω : π

Γ `v v : A v′ Values

(x : ∀ς̄ .∀α : τ .∀δ̄.π̄ ⇒ A) ∈ Γ σ = [τ ′/ς,B/α,∆/δ] Γ c̀o γ : σ(π)

Γ `v x : σ(A) x τ̄ ′ B̄ ∆̄ γ̄
TmVar

Γ `v v : A v′

Γ c̀o γ : A 6 B

Γ `v v : B  v′ B γ
TmCastV

Γ `v unit : Unit unit
TmUnit

Γ, x : A `c c : C  c′ Γ v̀ty A : τ  T

Γ `v (fun x 7→ c) : A→ C  fun (x : T ) 7→ c′
TmTmAbs

Γ, x : A `c cr : B ! ∆ c′r Γ v̀ty A : τ  T[
(Op : AOp → BOp) ∈ Σ Γ, x : AOp, k : BOp → B ! ∆ `c cOp : B ! ∆ c′Op

]
Op∈O

cres = {return (x : T ) 7→ c′r, [Opx k 7→ c′Op]Op∈O}
Γ `v {return x 7→ cr, [Opx k 7→ cOp]Op∈O} : A ! ∆ ∪ O V B ! ∆ cres

TmHand

Γ `c c : C  c′ Computations

Γ `c c : C 1 c′

Γ c̀o γ : C 1 6 C 2

Γ `c c : C 2 c′ B γ
TmCastC

Γ `v v1 : A→ C  v′1

Γ `v v2 : A v′2

Γ `c v1 v2 : C  v′1 v
′
2

TmTmApp

S = ∀ς̄ .α : τ .∀δ̄.π̄ ⇒ A

Γ, ς̄, α : τ , δ̄, ω : π `v v : A v′ Γ, x : S `c c : C  c′

Γ `c let x = v in c : C  let x = Λς̄.Λα : τ .Λδ̄.Λ(ω : π).v′ in c′
TmLet

Γ `v v : A v′

Γ `c return v : A ! ∅ return v′
TmReturn

(Op : AOp → BOp) ∈ Σ Γ `v v : AOp v′

Γ, y : BOp `c c : A ! ∆ c′ Γ v̀ty BOp : τ  TOp Op ∈ ∆

Γ `c Op v (y.c) : A ! ∆ Op v′ (y : TOp.c
′)

TmOp

Γ `c c1 : A ! ∆ c′1 Γ, x : A `c c2 : B ! ∆ c′2

Γ `c do x← c1; c2 : B ! ∆ do x← c′1; c′2
TmDo

Γ `v v : C V D  v′ Γ `c c : C  c′

Γ `c handle c with v : D  handle c′ with v′
TmHandle

Fig. 2: ImpEff Typing & Elaboration
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Γ c̀o γ : ρ Constraint Entailment

( ω : π) ∈ Γ
Γ c̀o ω : π

CoVar
Γ v̀ty A : τ  T

Γ c̀o 〈T 〉 : A 6 A
VCoRefl

Γ ∆̀ ∆

Γ c̀o 〈∆〉 :∆ 6 ∆
DCoRefl

Γ c̀o γ1 : A1 6 A2

Γ c̀o γ2 : A2 6 A3

Γ c̀o γ1 � γ2 : A1 6 A3

VCoTrans

Γ c̀o γ1 : C 1 6 C 2

Γ c̀o γ2 : C 2 6 C 3

Γ c̀o γ1 � γ2 : C 1 6 C 3

CCoTrans

Γ c̀o γ1 :∆1 6 ∆2

Γ c̀o γ2 :∆2 6 ∆3

Γ c̀o γ1 � γ2 :∆1 6 ∆3

DCoTrans

Γ c̀o γ1 : B 6 A Γ c̀o γ2 : C 6 D

Γ c̀o γ1 → γ2 : A→ C 6 B → D
VCoArr

Γ c̀o γ : A→ C 6 B → D

Γ c̀o left(γ) : B 6 A
VCoArrL

Γ c̀o γ : A→ C 6 B → D

Γ c̀o right(γ) : C 6 D
CCoArrR

Γ c̀o γ1 : C 2 6 C 1 Γ c̀o γ2 : D1 6 D2

Γ c̀o γ1 V γ2 : C 1 V D1 6 C 2 V D2

VCoHand

Γ c̀o γ : C 1 V D1 6 C 2 V D2

Γ c̀o left(γ) : C 2 6 C 1

CCoHL
Γ c̀o γ : C 1 V D1 6 C 2 V D2

Γ c̀o right(γ) : D1 6 D2

CCoHR

Γ c̀o γ1 : A1 6 A2 Γ c̀o γ2 :∆1 6 ∆2

Γ c̀o γ1 ! γ2 : A1 ! ∆1 6 A2 ! ∆2

CCoComp

Γ c̀o γ : A1 ! ∆1 6 A2 ! ∆2

Γ c̀o pure(γ) : A1 6 A2

VCoPure
Γ c̀o γ : A1 ! ∆1 6 A2 ! ∆2

Γ c̀o impure(γ) :∆1 6 ∆2

DCoImpure

Γ c̀o ∅∆ : ∅ 6 ∆
DCoNil

Γ c̀o γ :∆1 6 ∆2 (Op : AOp → BOp) ∈ Σ
Γ c̀o {Op} ∪ γ : {Op} ∪∆1 6 {Op} ∪∆2

DCoOp

Fig. 3: ImpEff Constraint Entailment

allows us to capture subtyping between two value types, computation types or dirts,
within the same relation. Subtyping can be established in several ways:

Rule CoVar handles given assumptions. Rules VCoRefl and DCoRefl ex-
press that subtyping is reflexive, for both value types and dirts. Notice that we
do not have a rule for the reflexivity of computation types since, as we illustrate
below, it can be established using the reflexivity of their subparts. Rules VCo-
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Trans, CCoTrans and DCoTrans express the transitivity of subtyping for
value types, computation types and dirts, respectively. Rule VCoArr establishes
inequality of arrow types. As usual, the arrow type constructor is contravariant
in the argument type. Rules VCoArrL and CCoArrR are the inversions of
Rule VCoArr, allowing us to establish the relation between the subparts of the
arrow types. Rules VCoHand, CCoHL, and CCoHR work similarly, for handler
types. Rule CCoComp captures the covariance of type constructor (!), establish-
ing subtyping between two computation types if subtyping is established for their
respective subparts. Rules VCoPure and DCoImpure are its inversions. Finally,
Rules DCoNil and DCoOp establish subtyping between dirts. Rule DCoNil cap-
tures that the empty dirty set ∅ is a subdirt of any dirt ∆ and Rule DCoOp expresses
that dirt subtyping preserved under extension with the same operation Op.

Well-formedness of Types, Constraints, Dirts, and Skeletons The relations
Γ v̀ty A : τ  T and Γ c̀ty C : τ  C check the well-formedness of value and
computation types respectively. Similarly, relations Γ c̀t ρ ρ and Γ ∆̀ ∆ check
the well-formedness of constraints and dirts, respectively.

4 The ExEff Language

4.1 Syntax

Figure 4 presents ExEff’s syntax. ExEff is an intensional type theory akin to
System F [7], where every term encodes its own typing derivation. In essence, all ab-
stractions and applications that are implicit in ImpEff, are made explicit in ExEff
via new syntactic forms. Additionally, ExEff is impredicative, which is reflected in
the lack of discrimination between value types, qualified types and type schemes; all
non-computation types are denoted by T . While the impredicativity is not strictly
required for the purpose at hand, it makes for a cleaner system.

Coercions Of particular interest is the use of explicit subtyping coercions, denoted
by γ. ExEff uses these to replace the implicit casts of ImpEff (Rules TmCastV
and TmCastC in Figure 2) with explicit casts (v B γ) and (c B γ).

Essentially, coercions γ are explicit witnesses of subtyping derivations: each co-
ercion form corresponds to a subtyping rule. Subtyping forms a partial order, which
is reflected in coercion forms γ1 � γ2, 〈T 〉, and 〈∆〉. Coercion form γ1 � γ2 cap-
tures transitivity, while forms 〈T 〉 and 〈∆〉 capture reflexivity for value types and
dirts (reflexivity for computation types can be derived from these).

Subtyping for skeleton abstraction, type abstraction, dirt abstraction, and qual-
ification is witnessed by forms ∀ς.γ, ∀α.γ, ∀δ.γ, and π ⇒ γ, respectively. Similarly,
forms γ[τ ], γ[T ], γ[∆], and γ1@γ2 witness subtyping of skeleton instantiation, type
instantiation, dirt instantiation, and coercion application, respectively.

Syntactic forms γ1 → γ2 and γ1 V γ2 capture injection for the arrow and the
handler type constructor, respectively. Similarly, inversion forms left(γ) and right(γ)
capture projection, following from the injectivity of both type constructors.
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Terms

value v ::= x | unit | fun (x : T ) 7→ c | h
| Λς.v | v τ | Λα : τ.v | v T | Λδ.v | v ∆ | Λ(ω : π).v | v γ | v B γ

handler h ::= {return (x : T ) 7→ cr, Op1 x k 7→ cOp1 , . . . , Opn x k 7→ cOpn}
computation c ::= return v | Op v (y : T .c) | do x← c1; c2

| handle c with v | v1 v2 | let x = v in c | c B γ

Types

skeleton τ ::= ς | Unit | τ1 → τ2 | τ1 V τ2 | ∀ς.τ

value type T ::= α | Unit | T → C | C 1 V C 2 | ∀ς.T | ∀α :τ.T | ∀δ.T | π ⇒ T
simple coercion type π ::= T1 6 T2 | ∆1 6 ∆2

coercion type ρ ::= π | C 1 6 C 2

computation type C ::= T ! ∆
dirt ∆ ::= δ | ∅ | {Op} ∪∆

Coercions

γ ::= ω | γ1 � γ2 | 〈T 〉 | γ1 → γ2 | γ1 V γ2 | left(γ) | right(γ) | 〈∆〉 | ∅∆ | {Op} ∪ γ
| ∀ς.γ | γ[τ ] | ∀α.γ | γ[T ] | ∀δ.γ | γ[∆] | π ⇒ γ | γ1@γ2 | γ1 ! γ2 | pure(γ) | impure(γ)

Fig. 4: ExEff Syntax

Coercion form γ1 ! γ2 witnesses subtyping for computation types, using proofs
for their components. Inversely, syntactic forms pure(γ) and impure(γ) witness sub-
typing between the value- and dirt-components of a computation coercion.

Finally, coercion forms ∅∆ and {Op}∪γ are concerned with dirt subtyping. Form
∅∆ witnesses that the empty dirt ∅ is a subdirt of any dirt ∆. Lastly, coercion form
{Op} ∪ γ witnesses that subtyping between dirts is preserved under extension with
a new operation. Note that we do not have an inversion form to extract a witness
for ∆1 6 ∆2 from a coercion for {Op} ∪∆1 6 {Op} ∪∆2. The reason is that dirt
sets are sets and not inductive structures. For instance, for ∆1 = {Op} and ∆2 = ∅
the latter subtyping holds, but the former does not.

4.2 Typing

Value & Computation Typing Typing for ExEff values and computations is
presented in Figures 5 and 6 and is given by two mutually recursive relations of the
form Γ v̀ v : T (values) and Γ c̀ c : C (computations). ExEff typing environments
Γ contain bindings for variables of all sorts:

Γ ::= ε | Γ, ς | Γ, α : τ | Γ, δ | Γ, x : T | Γ, ω : π

Typing is entirely syntax-directed. Apart from the typing rules for skeleton, type,
dirt, and coercion abstraction (and, subsequently, skeleton, type, dirt, and coercion
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(x : T ) ∈ Γ
Γ v̀ x : T Γ v̀ unit : Unit

Γ, x : T c̀ c : C Γ T̀ T : τ

Γ v̀ (fun x : T 7→ c) : T → C

Γ v̀ v : T1 Γ c̀o γ : T1 6 T2

Γ v̀ v B γ : T2

Γ, ς v̀ v : T

Γ v̀ Λς.v : ∀ς.T
Γ, α : τ v̀ v : T

Γ v̀ Λα : τ.v : ∀α : τ.T

Γ, δ v̀ v : T

Γ v̀ Λδ.v : ∀δ.T
Γ, ω : π v̀ v : T Γ ρ̀ π

Γ v̀ Λ(ω : π).v : π ⇒ T

Γ v̀ v : π ⇒ T Γ c̀o γ : π

Γ v̀ v γ : T

Γ, x : Tx c̀ cr : T !∆
[(Op : T1 → T2) ∈ Σ Γ, x : T1, k : T2 → T !∆ c̀ cOp : T !∆]

Op∈O

Γ v̀ {return (x : Tx) 7→ cr, [Opx k 7→ cOp]Op∈O} : Tx ! ∆ ∪ O V T ! ∆

Γ v̀ v : ∀ς.T
Γ τ̀ τ

Γ v̀ v τ : T [τ/ς]

Γ v̀ v : ∀α : τ.T1

Γ T̀ T2 : τ

Γ v̀ v T2 : T1[T2/α]

Γ v̀ v : ∀δ.T
Γ ∆̀ ∆

Γ v̀ v ∆ : T [∆/δ]

Fig. 5: ExEff Value Typing

application), the main difference between typing for ImpEff and ExEff lies in the
explicit cast forms, (v B γ) and (c B γ). Given that a value v has type T1 and
that γ is a proof that T1 is a subtype of T2, we can upcast v with an explicit cast
operation (v B γ). Upcasting for computations works analogously.

Well-formedness of Types, Constraints, Dirts & Skeletons The definitions of
the judgements that check the well-formedness of ExEff value types (Γ T̀ T : τ),
computation types (Γ C̀ C : τ), dirts (Γ ∆̀ ∆), and skeletons (Γ τ̀ τ) are equally
straightforward as those for ImpEff.

Coercion Typing Coercion typing formalizes the intuitive interpretation of coercions
we gave in Section 4.1 and takes the form Γ c̀o γ : ρ. It is essentially an extension
of the constraint entailment relation of Figure 3.

4.3 Operational Semantics

Figure 7 presents selected rules of ExEff’s small-step, call-by-value operational
semantics. For lack of space, we omit β-rules and other common rules and focus
only on cases of interest.

Firstly, one of the non-conventional features of our system lies in the stratification
of results in plain results and cast results:
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Γ v̀ v1 : T → C Γ v̀ v2 : T

Γ c̀ v1 v2 : C

Γ v̀ v : T Γ, x : T c̀ c : C

Γ c̀ let x = v in c : C

Γ c̀ v : T

Γ c̀ return v : T ! ∅
Γ c̀ c1 : T1 ! ∆ Γ, x : T1 c̀ c2 : T2 ! ∆

Γ c̀ do x← c1; c2 : T2 ! ∆

(Op : T1 → T2) ∈ Σ Γ v̀ v : T1 Γ, y : T2 c̀ c : T ! ∆ Op ∈ ∆
Γ c̀ Op v (y : T2.c) : T ! ∆

Γ v̀ v : C 1 V C 2 Γ c̀ c : C 1

Γ c̀ handle c with v : C 2

Γ c̀ c : C 1 Γ c̀o γ : C 1 6 C 2

Γ c̀ c B γ : C 2

Fig. 6: ExEff Computation Typing

terminal value vT ::= unit | h | fun x : T 7→ c | Λα : τ.v | Λδ.v | λω : π.v
value result vR ::= vT | vT B γ

computation result cR ::= return vT | (return vT ) B γ | Op vR (y : T .c)

Terminal values vT represent conventional values, and value results vR can either be
plain terminal values vT or terminal values with a cast: vT B γ. The same applies
to computation results cR.7

Although unusual, this stratification can also be found in Crary’s coercion cal-
culus for inclusive subtyping [4], and, more recently, in System FC [25]. Stratifica-
tion is crucial for ensuring type preservation. Consider for example the expression
(return 5 B 〈int〉 ! ∅{Op}), of type int ! {Op}. We can not reduce the expression
further without losing effect information; removing the cast would result in compu-
tation (return 5), of type int ! ∅. Even if we consider type preservation only up to
subtyping, the redex may still occur as a subterm in a context that expects solely
the larger type.

Secondly, we need to make sure that casts do not stand in the way of evaluation.
This is captured in the so-called “push” rules, all of which appear in Figure 7.

In relation v  v v
′, the first rule groups nested casts into a single cast, by means

of transitivity. The next three rules capture the essence of push rules: whenever a
redex is “blocked” due to a cast, we take the coercion apart and redistribute it (in
a type-preserving manner) over the subterms, so that evaluation can progress.

The situation in relation c c c
′ is quite similar. The first rule uses transitivity to

group nested casts into a single cast. The second rule is a push rule for β-reduction.
The third rule pushes a cast out of a return-computation. The fourth rule pushes a
coercion inside an operation-computation, illustrating why the syntax for cR does not
require casts on operation-computations. The fifth rule is a push rule for sequencing

7 Observe that operation values do not feature an outermost cast operation, as the coercion
can always be pushed into its continuation.
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v  v v
′ Values

(vT B γ1) B γ2  v v
T B (γ1 � γ2) (vT B γ) T  v (vT T ) B γ[T ]

(vT B γ) ∆ v (vT ∆) B γ[∆] (vT B γ1) γ2  v (vT γ2) B γ1@γ2

c c c
′ Computations

(cR B γ1) B γ2  c c
R B (γ1 � γ2) (vT1 B γ) v2  c (vT1 (v2 B left(γ))) B right(γ)

return (vT B γ) c (return vT ) B (γ ! ∅∅)

(Op vR (y : T .c)) B γ  c Op v
R (y : T .(c B γ))

do x← ((return vT ) B γ); c2  c c2[(vT B pure(γ))/x]

do x← Op vR (y : T .c1); c2  c Op v
R (y : T .do x← c1; c2)

handle c with (vT B γ) c (handle (c B left(γ)) with vT ) B right(γ)

handle ((return vT ) B γ) with h c cr[v
T B pure(γ)/x]

handle (Op vR (y : T .c)) with h c cOp[v
R/x, (fun (y : T ) 7→ handle c with h)/k]

handle (Op vR (y : T .c)) with h c Op v
R (y : T .handle c with h)

Fig. 7: ExEff Operational Semantics (Selected Rules)

computations and performs two tasks at once. Since we know that the computation
bound to x calls no operations, we (a) safely “drop” the impure part of γ, and
(b) substitute x with vT , cast with the pure part of γ (so that types are preserved).
The sixth rule handles operation calls in sequencing computations. If an operation
is called in a sequencing computation, evaluation is suspended and the rest of the
computation is captured in the continuation.

The last four rules are concerned with effect handling. The first of them pushes
a coercion on the handler “outwards”, such that the handler can be exposed and
evaluation is not stuck (similarly to the push rule for term application). The second
rule behaves similarly to the push/beta rule for sequencing computations. Finally,
the last two rules are concerned with handling of operations. The first of the two
captures cases where the called operation is handled by the handler, in which case
the respective clause of the handler is called. As illustrated by the rule, like Pretnar
[20], ExEff features deep handlers: the continuation is also wrapped within a with-
handle construct. The last rule captures cases where the operation is not covered
by the handler and thus remains unhandled.

We have shown that ExEff is type safe:
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Theorem 1 (Type Safety).

– If Γ v̀ v : T then either v is a result value or v  v v
′ and Γ v̀ v

′ : T .
– If Γ c̀ c : C then either c is a result computation or c c c

′ and Γ c̀ c
′ : C .

5 Type Inference & Elaboration

This section presents the typing-directed elaboration of ImpEff into ExEff. This
elaboration makes all the implicit type and effect information explicit, and introduces
explicit term-level coercions to witness the use of subtyping.

After covering the declarative specification of this elaboration, we present a
constraint-based algorithm to infer ImpEff types and at the same time elaborate
into ExEff. This algorithm alternates between two phases: 1) the syntax-directed
generation of constraints from the ImpEff term, and 2) solving these constraints.

5.1 Elaboration of ImpEff into ExEff

The grayed parts of Figure 2 augment the typing rules for ImpEff value and compu-
tation terms with typing-directed elaboration to corresponding ExEff terms. The
elaboration is mostly straightforward, mapping every ImpEff construct onto its
corresponding ExEff construct while adding explicit type annotations to binders
in Rules TmTmAbs, TmHandler and TmOp. Implicit appeals to subtyping are
turned into explicit casts with coercions in Rules TmCastV and TmCastC. Rule
TmLet introduces explicit binders for skeleton, type, and dirt variables, as well as
for constraints. These last also introduce coercion variables ω that can be used in
casts. The binders are eliminated in rule TmVar by means of explicit application
with skeletons, types, dirts and coercions. The coercions are produced by the aux-
iliary judgement Γ c̀o γ : π, defined in Figure 3, which provides a coercion witness
for every subtyping proof.

As a sanity check, we have shown that elaboration preserves types.

Theorem 2 (Type Preservation).

– If Γ `v v : A v′ then elabΓ (Γ ) v̀ v
′ : elabS(A).

– If Γ `c c : C  c′ then elabΓ (Γ ) c̀ c
′ : elabC (C ).

Here elabΓ (Γ ), elabS(A) and elabC (C ) convert ImpEff environments and types
into ExEff environments and types.

5.2 Constraint Generation & Elaboration

Constraint generation with elaboration into ExEff is presented in Figures 8 (values)
and 9 (computations). Before going into the details of each, we first introduce the
three auxiliary constructs they use.



15

Q;Γ v̀ v : A | Q′;σ v′ Values

(x : ∀ς̄ .α : τ .∀δ̄.π̄ ⇒ A) ∈ Γ σ = [ς ′/ς, α′/α, δ′/δ]

Q;Γ v̀ x : σ(A) | ω : σ(π), α′ : σ(τ),Q; • x ς̄ ′ ᾱ′ δ̄′ ω̄

Q;Γ v̀ unit : Unit | Q; • unit

α : ς,Q;Γ, x : α c̀ c : C | Q′;σ c′

Q;Γ v̀ (fun x 7→ c) : σ(α)→ C | Q′;σ fun x : σ(α) 7→ c′

αr : ςr,Q;Γ, x : αr c̀ cr : Br ! ∆r | Q0;σr c′r σi = σi · σi−1 · . . . · σ1

Opi ∈ O :
(Opi : Ai → Bi) ∈ Σ
αi : ςi,Qi−1;σi−1(σr(Γ )), x : Ai, k : Bi → αi ! δi c̀ cOpi : BOpi

!∆Opi
| Qi;σi c′Opi

Q′ = αin : ςin , αout : ςout , ω1 : σn(Br) 6 αout , ω2 : σn(∆r) 6 δout , ω3i : σn(BOpi
) 6 αout

n
,

ω4i : σn(∆Opi
) 6 δout

n
, ω5i : Bi → αout ! δout 6 Bi → σn(αi ! δi)

n
,

ω6 : αin 6 σ
n(σr(αr)), ω7 : δin 6 δout ∪ O,Qn

cres = { return y : σn(σr(αr)) 7→ σn(c′r)[y B ω6/x] B ω1 !ω2

,
[
Opi x l 7→ σn(c′Opi)[l B ω5i/k] B ω3i !ω4i

]
Opi∈O

} B (〈αin〉 !ω7 V 〈αout〉 ! 〈δout〉)

Q;Γ v̀ {return x 7→ cr, [Opx k 7→ cOp]Op∈O} : αin ! δin V αout ! δout | Q′; (σn · σr) cres

Fig. 8: Constraint Generation with Elaboration (Values)

constraint set P,Q ::= • | τ1 = τ2,P | α : τ,P | ω : π,P
typing environment Γ ::= ε | Γ, x : S

substitution σ ::= • | σ · [τ/ς] | σ · [A/α] | σ · [∆/δ] | σ · [γ/ω]

At the heart of our algorithm are sets P, containing three different kinds of con-
straints: (a) skeleton equalities of the form τ1 = τ2, (b) skeleton constraints of the
form α : τ , and (c) wanted subtyping constraints of the form ω : π. The purpose of
the first two becomes clear when we discuss constraint solving, in Section 5.3. Next,
typing environments Γ only contain term variable bindings, while other variables
represent unknowns of their sort and may end up being instantiated after constraint
solving. Finally, during type inference we compute substitutions σ, for refining as of
yet unknown skeletons, types, dirts, and coercions. The last one is essential, since
our algorithm simultaneously performs type inference and elaboration into ExEff.

A substitution σ is a solution of the set P, written as σ |= P, if we get derivable
judgements after applying σ to all constraints in P.

Values. Constraint generation for values takes the form Q;Γ v̀ v : A | Q′;σ v′ .
It takes as inputs a set of wanted constraints Q, a typing environment Γ , and a



16

ImpEff value v, and produces a value type A, a new set of wanted constraints Q′,
a substitution σ, and a ExEff value v′.

Unlike standard HM, our inference algorithm does not keep constraint generation
and solving separate. Instead, the two are interleaved, as indicated by the additional
arguments of our relation: (a) constraints Q are passed around in a stateful manner
(i.e., they are input and output), and (b) substitutions σ generated from constraint
solving constitute part of the relation output. We discuss the reason for this inter-
leaved approach in Section 5.4; we now focus on the algorithm.

The rules are syntax-directed on the input ImpEff value. The first rule handles
term variables x: as usual for constraint-based type inference the rule instantiates
the polymorphic type (∀ς̄ .α : τ .∀δ̄.π̄ ⇒ A) of x with fresh variables; these are place-
holders that are determined during constraint solving. Moreover, the rule extends the
wanted constraints P with π̄, appropriately instantiated. In ExEff, this corresponds
to explicit skeleton, type, dirt, and coercion applications.

More interesting is the third rule, for term abstractions. Like in standard Hindley-
Damas-Milner [5], it generates a fresh type variable α for the type of the abstracted
term variable x. In addition, it generates a fresh skeleton variable ς, to capture the
(yet unknown) shape of α.

As explained in detail in Section 5.3, the constraint solver instantiates type vari-
ables only through their skeletons annotations. Because we want to allow local con-
straint solving for the body c of the term abstraction the opportunity to produce
a substitution σ that instantiates α, we have to pass in the annotation constraint
α : ς.8 We apply the resulting substitution σ to the result type σ(α)→ C .9

Finally, the fourth rule is concerned with handlers. Since it is the most complex
of the rules, we discuss each of its premises separately:

Firstly, we infer a type Br !∆r for the right hand side of the return-clause. Since
αr is a fresh unification variable, just like for term abstraction we require αr : ςr,
for a fresh skeleton variable ςr.

Secondly, we check every operation clause in O in order. For each clause, we
generate fresh skeleton, type, and dirt variables (ςi, αi, and δi), to account for
the (yet unknown) result type αi ! δi of the continuation k, while inferring type
BOpi

!∆Opi
for the right-hand-side cOpi .

More interesting is the (final) set of wanted constraints Q′. First, we assign to
the handler the overall type

αin ! δin V αout ! δout

where ςin , αin , δin , ςout , αout , δout are fresh variables of the respective sorts. In turn,
we require that (a) the type of the return clause is a subtype of αout ! δout (given by
the combination of ω1 and ω2), (b) the right-hand-side type of each operation clause
is a subtype of the overall result type: σn(BOpi

!∆Opi
) 6 αout ! δout (witnessed by

ω3i !ω4i), (c) the actual types of the continuations Bi → αout ! δout in the operation
clauses should be subtypes of their assumed types Bi → σn(αi ! δi) (witnessed

8 This hints at why we need to pass constraints in a stateful manner.
9 Though σ refers to ImpEff types, we abuse notation to save clutter and apply it directly

to ExEff entities too.
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Q;Γ c̀ c : C | Q′;σ c′ Computations

Q;Γ v̀ v1 : A1 | Q1;σ1 v′1 Q1;σ1(Γ ) v̀ v2 : A2 | Q2;σ2 v′2

Q;Γ c̀ v1 v2 : α ! δ | α : ς, ω : σ2(A1) 6 A2 → α ! δ,Q2; (σ2 · σ1) (σ2(v′1) B ω) v′2

Q;Γ v̀ v : A | Q′;σ v′

Q;Γ c̀ return v : A ! ∅ | Q′;σ return v′

Q;Γ v̀ v : A | Qv;σ1 v′

solve(•; •; Qv) = (σ′1,Q′v) split(σ′1(σ1(Γ )),Q′v, σ′1(A)) = 〈ς̄ , α : τ , δ̄, ω : π,Q1〉
Q1;σ′1(σ1(Γ )), x : ∀ς̄ .∀α : τ .∀δ̄.π ⇒ σ′1(A) c̀ c : C | Q2;σ2 c′

cres = let x = σ2(Λς̄.Λα : τ .Λδ̄.Λ(ω : elabρ(π)).v′) in c′

Q;Γ c̀ let x = v in c : C | Q2; (σ2 · σ′1 · σ1) cres

Q;Γ v̀ v : A1 | Q1;σ1 v′ Q1;σ1(Γ ), y : BOp c̀ c : A2 ! ∆2 | Q2;σ2 c′

(Op : AOp → BOp) ∈ Σ cres = Op (σ2(v′) B ω) (y : elabS(BOp).c
′)

Q;Γ c̀ Op v (y : BOp.c) : A2 ! {Op} ∪∆2 | ω : σ2(A1) 6 AOp,Q2; (σ2 · σ1) cres

Q;Γ c̀ c1 : A1 !∆1 | Q1;σ1 c′1 Q1;σ1(Γ ), x : A1 c̀ c2 : A2 !∆2 | Q2;σ2 c′2

cres = do x← (σ2(c′1) B 〈σ2(A1)〉 !ω1); (c′2 B 〈A2〉 !ω2)

Q;Γ c̀ do x← c1; c2 : A2 ! δ | ω1 : σ2(∆1) 6 δ, ω2 :∆2 6 δ,Q2; (σ2 · σ1) cres

Q;Γ v̀ v : A1 | Q1;σ1 v′ Q1;σ1(Γ ) c̀ c : A2 !∆2 | Q2;σ2 c′

Q′ = α1 : ς1, α2 : ς2, ω1 : σ2(A1) 6 (α1 ! δ1 V α2 ! δ2), ω2 : A2 6 α1, ω3 :∆2 6 δ1,Q2

cres = handle (c′ B (ω2 ! ω3)) with (σ2(v′) B ω1)

Q;Γ c̀ handle c with v : α2 ! ∆2 | Q′; (σ2 · σ1) cres

Fig. 9: Constraint Generation with Elaboration (Computations)

by ω5i). (d) the overall argument type αin is a subtype of the assumed type of
x: σn(σr(αr)) (witnessed by ω6), and (e) the input dirt set δin is a subtype of the
resulting dirt set δout , extended with the handled operations O (witnessed by ω7).

All the aforementioned implicit subtyping relations become explicit in the elab-
orated term cres , via explicit casts.

Computations. The judgement Q;Γ c̀ c : C | Q′;σ c′ generates constraints
for computations.

The first rule handles term applications of the form v1 v2. After inferring a type
for each subterm (A1 for v1 and A2 for v2), we generate the wanted constraint
σ2(A1) 6 A2 → α ! δ, with fresh type and dirt variables α and δ, respectively.
Associated coercion variable ω is then used in the elaborated term to explicitly
(up)cast v′1 to the expected type A2 → α ! δ.
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The third rule handles polymorphic let-bindings. First, we infer a type A for v, as
well as wanted constraints Qv. Then, we simplify wanted constraints Qv by means
of function solve (which we explain in detail in Section 5.3 below), obtaining a
substitution σ′

1 and a set of residual constraints Q′
v.

Generalization of x’s type is performed by auxiliary function split , given by the
following clause:

ς̄ = {ς | (α : ς) ∈ Q,@α′.α′ /∈ ᾱ ∧ (α′ : ς) ∈ Q}
ᾱ = fvα(Q) ∪ fvα(A) \ fvα(Γ ) Q1 = {(ω : π) | (ω : π) ∈ Q, fv(π) 6⊆ fv(Γ )}

δ̄ = fvδ(Q) ∪ fvδ(A) \ fvδ(Γ ) Q2 = Q−Q1

split(Γ,Q,A) = 〈ς̄ , α : τ , δ̄,Q1,Q2〉

In essence, split generates the type (scheme) of x in parts. Additionally, it computes
the subset Q2 of the input constraints Q that do not depend on locally-bound
variables. Such constraints can be floated “upwards”, and are passed as input when
inferring a type for c. The remainder of the rule is self-explanatory.

The fourth rule handles operation calls. Observe that in the elaborated term, we
upcast the inferred type to match the expected type in the signature.

The fifth rule handles sequences. The requirement that all computations in a do-
construct have the same dirt set is expressed in the wanted constraints σ2(∆1) 6 δ
and ∆2 6 δ (where δ is a fresh dirt variable; the resulting dirt set), witnessed by
coercion variables ω1 and ω2. Both coercion variables are used in the elaborated
term to upcast c1 and c2, such that both draw effects from the same dirt set δ.

Finally, the sixth rule is concerned with effect handling. After inferring type A1

for the handler v, we require that it takes the form of a handler type, witnessed
by coercion variable ω1 : σ2(A1) 6 (α1 ! δ1 V α2 ! δ2), for fresh α1, α2, δ1, δ2.
To ensure that the type A2 !∆2 of c matches the expected type, we require that
A2 !∆2 6 α1 ! δ1. Our syntax does not include coercion variables for computation
subtyping; we achieve the same effect by combining ω2 : A2 6 α1 and ω3 : ∆2 6 δ1.

Theorem 3 (Soundness of Inference). If •;Γ v̀ v : A | Q;σ v′ then for

any σ′ |= Q, we have (σ′ · σ)(Γ ) `v v : σ′(A) σ′(v′) , and analogously for
computations.

Theorem 4 (Completeness of Inference). If Γ `v v : A v′ then we have

•;Γ v̀ v : A′ | Q;σ v′′ and there exists σ′ |= Q and γ, such that σ′(v′′) = v′

and σ(Γ ) c̀o γ : σ′(A′) 6 A. An analogous statement holds for computations.

5.3 Constraint Solving

The second phase of our inference-and-elaboration algorithm is the constraint solver.
It is defined by the solve function signature:

solve(σ; P; Q) = (σ′, P ′)

It takes three inputs: the substitution σ accumulated so far, a list of already processed
constraints P, and a queue of still to be processed constraints Q. There are two
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outputs: the substitution σ′ that solves the constraints and the residual constraints
P ′. The substitutions σ and σ′ contain four kinds of mappings: ς 7→ τ , α 7→ A,
δ 7→ ∆ and ω → γ which instantiate respectively skeleton variables, type variables,
dirt variables and coercion variables.

Theorem 5 (Correctness of Solving). For any setQ, the call solve(•; •;Q) either
results in a failure, in which case Q has no solutions, or returns (σ,P) such that for
any σ′ |= Q, there exists σ′′ |= P such that σ′ = σ′′ · σ.

The solver is invoked with solve(•; •; Q), to process the constraints Q gen-
erated in the first phase of the algorithm, i.e., with an empty substitution and no
processed constraints. The solve function is defined by case analysis on the queue.

Empty Queue When the queue is empty, all constraints have been processed. What
remains are the residual constraints and the solving substitution σ, which are both
returned as the result of the solver.

solve(σ; P; •) = (σ, P)

Skeleton Equalities The next set of cases we consider are those where the queue is
non-empty and its first element is an equality between skeletons τ1 = τ2. We consider
seven possible cases based on the structure of τ1 and τ2 that together essentially
implement conventional unification as used in Hindley-Milner type inference [5].

solve(σ; P; τ1 = τ2,Q) =

match τ1 = τ2 with

| ς = ς 7→ solve(σ; P; Q)

| ς = τ 7→ if ς /∈ fvς(τ) then let σ′ = [τ/ς] in solve(σ′ · σ; •;σ′(Q,P)) else fail

| τ = ς 7→ if ς /∈ fvς(τ) then let σ′ = [τ/ς] in solve(σ′ · σ; •;σ′(Q,P)) else fail

| Unit = Unit 7→ solve(σ; P; Q)

|(τ1 → τ2) = (τ3 → τ4) 7→ solve(σ; P; τ1 = τ3, τ2 = τ4,Q)

|(τ1 V τ2) = (τ3 V τ4) 7→ solve(σ; P; τ1 = τ3, τ2 = τ4,Q)

| otherwise 7→ fail

The first case applies when both skeletons are the same type variable ς. Then
the equality trivially holds. Hence we drop it and proceed with solving the remaining
constraints. The next two cases apply when either τ1 or τ2 is a skeleton variable ς.
If the occurs check fails, there is no finite solution and the algorithm signals failure.
Otherwise, the constraint is solved by instantiating the ς. This additional substitution
is accumulated and applied to all other constraints P,Q. Because the substitution
might have modified some of the already processed constraints P, we have to revisit
them. Hence, they are all pushed back onto the queue, which is processed recursively.
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The next three cases consider three different ways in which the two skeletons
can have the same instantiated top-level structure. In those cases the equality is
decomposed into equalities on the subterms, which are pushed onto the queue and
processed recursively.

The last catch-all case deals with all ways in which the two skeletons can be
instantiated to different structures. Then there is no solution.

Skeleton Annotations The next four cases consider a skeleton annotation α : τ
at the head of the queue, and propagate the skeleton instantiation to the type
variable. The first case, where the skeleton is a variable ς, has nothing to do, moves
the annotation to the processed constraints and proceeds with the remainder of the
queue. In the other three cases, the skeleton is instantiated and the solver instantiates
the type variable with the corresponding structure, introducing fresh variables for any
subterms. The instantiating substitution is accumulated and applied to the remaining
constraints, which are processed recursively.

solve(σ; P; α : τ,Q) =

match τ with

| ς 7→ solve(σ; P, α : τ ; Q)

| Unit 7→ let σ′ = [Unit/α] in solve(σ′ · σ; •; σ′(Q,P))

| τ1 → τ2 7→ let σ′ = [(ατ11 → ατ22 ! δ)/α] in solve(σ′ ·σ; •; α1 : τ1, α2 : τ2, σ
′(Q,P))

| τ1 V τ2 7→ let σ′ = [(ατ11 ! δ1 V ατ22 ! δ2)/α] in solve(σ′ ·σ; •; α1 : τ1, α2 : τ2, σ
′(Q,P))

Value Type Subtyping Next are the cases where a subtyping constraint between
two value types A1 6 A2, with as evidence the coercion variable ω, is at the head
of the queue. We consider six different situations.

solve(σ; P; ω : A1 6 A2,Q) =

match A1 6 A2 with

|A 6 A 7→ let T = elabS(A) in solve([〈T 〉/ω] · σ; P; Q)

|ατ1 6 A 7→ let τ2 = skeleton(A) in solve(σ; P, ω : ατ1 6 A; τ1 = τ2,Q)

|A 6 ατ1 7→ let τ2 = skeleton(A) in solve(σ; P, ω : A 6 ατ1 ; τ2 = τ1,Q)

|(A1 → B1 !∆1) 6 (A2 → B2 !∆2) 7→ let σ′ = [(ω1 → ω2 !ω3)/ω] in

solve(σ′ · σ; P; ω1 : A2 6 A1, ω2 : B1 6 B2, ω3 : ∆1 6 ∆2,Q)

|(A1 !∆1 V A2 !∆2) 6 (A3 !∆3 V A4 !∆4) 7→ let σ′ = [(ω1 !ω2 V ω3 !ω4)/ω] in

solve(σ′ · σ; P; ω1 : A3 6 A1, ω2 : ∆3 6 ∆1, ω3 : A2 6 A4, ω4 : ∆2 6 ∆4,Q)

| otherwise 7→ fail

If the two types are equal, the subtyping holds trivially through reflexivity. The solver
thus drops the constraint and instantiates ω with the reflexivity coercion 〈T 〉. Note
that each coercion variable only appears in one constraint. So we only accumulate
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the substitution and do not have to apply it to the other constraints. In the next
two cases, one of the two types is a type variable α. Then we move the constraint
to the processed set. We also add an equality constraint between the skeletons10 to
the queue. This enforces the invariant that only types with the same skeleton are
compared. Through the skeleton equality the type structure (if any) from the type
is also transferred to the type variable. The next two cases concern two types with
the same top-level instantiation. The solver then decomposes the constraint into
constraints on the corresponding subterms and appropriately relates the evidence of
the old constraint to the new ones. The final case catches all situations where the
two types are instantiated with a different structure and thus there is no solution.
Auxiliary function skeleton(A) computes the skeleton of A.

Dirt Subtyping The final six cases deal with subtyping constraints between dirts.

solve(σ; P;ω : ∆ 6 ∆′,Q) =

match ∆ 6 ∆′ with

|O ∪ δ 6 O′ ∪ δ′ 7→ if O 6= ∅ then let σ′ = [((O\O′) ∪ δ′′)/δ′,O ∪ ω′/ω] in
solve(σ′ · σ; •; (ω′ : δ ≤ σ′(∆′)), σ′(Q,P))

else solve(σ; P, (ω : ∆ 6 ∆′); Q)

| ∅ 6 ∆′ 7→ solve([∅∆′/ω] · σ; P; Q)

| δ 6 ∅ 7→ let σ′ = [∅/δ; ∅∅/ω] in solve(σ′ · σ; •; σ′(Q,P))

|O ∪ δ 6 O′ 7→
if O ⊆ O′ then let σ′ = [O ∪ ω′/ω] in solve(σ′ · σ; P, (ω′ : δ 6 O′); Q) else fail

|O 6 O′ 7→ if O ⊆ O′ then let σ′ = [O ∪ ∅O′\O/ω] in solve(σ′ · σ; P; Q) else fail

|O 6 O′ ∪ δ′ 7→ let σ′ = [(O\O′) ∪ δ′′/δ′; O′ ∪ ∅(O′\O)∪δ′′/ω] in
solve(σ′ · σ; •; σ′(Q,P))

If the two dirts are of the general form O ∪ δ and O′ ∪ δ′, we distinguish two
subcases. Firstly, if O is empty, there is nothing to be done and we move the
constraint to the processed set. Secondly, if O is non-empty, we partially instantiate
δ′ with any of the operations that appear in O but not in O′. We then drop O from
the constraint, and, after substitution, proceed with processing all constraints. For
instance, for {Op1}∪ δ 6 {Op2}∪ δ′, we instantiate δ′ to {Op1}∪ δ′′—where δ′′ is a
fresh dirt variable—and proceed with the simplified constraint δ 6 {Op1, Op2} ∪ δ′′.
Note that due to the set semantics of dirts, it is not valid to simplify the above
constraint to δ 6 {Op2} ∪ δ′′. After all the substitution [δ 7→ {Op1}, δ′′ 7→ ∅] solves
the former and the original constraint, but not the latter.

The second case, ∅ 6 ∆′, always holds and is discharged by instantiating ω to
∅∆′ . The third case, δ 6 ∅, has only one solution: δ 7→ ∅ with coercion ∅∅. The
fourth case, O∪ δ 6 O′, has as many solutions as there are subsets of O′, provided
that O ⊆ O′. We then simplify the constraint to δ 6 O′, which we move to the set
of processed constraints. The fifth case, O 6 O′, holds iff O ⊆ O′. The last case,

10 We implicitly annotate every type variable with its skeleton: ατ .
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Terms
value v ::= x | unit | h | fun (x : τ) 7→ c | Λς.v | v τ

handler h ::= {return (x : τ) 7→ cr, Op1 x k 7→ cOp1 , . . . , Opn x k 7→ cOpn}
computation c ::= v1 v2 | let x = v in c | return v | Op v (y : τ .c)

| do x← c1; c2 | handle c with v

Types type τ ::= ς | τ1 → τ2 | τ1 V τ2 | Unit | ∀ς.τ

Fig. 10: SkelEff Syntax

O 6 O′∪δ′, is like the first, but without a dirt variable in the left-hand side. We can
satisfy it in a similar fashion, by partially instantiating δ′ with (O\O′)∪ δ′′—where
δ′′ is a fresh dirt variable. Now the constraint is satisfied and can be discarded.

5.4 Discussion

At first glance, the constraint generation algorithm of Section 5.2 might seem need-
lessly complex, due to eager constraint solving for let-generalization. Yet, we want to
generalize at local let-bound values over both type and skeleton variables,11 which
means that we must solve all equations between skeletons before generalizing. In
turn, since skeleton constraints are generated when solving subtyping constraints
(Section 5.3), all skeleton annotations should be available during constraint solving.
This can not be achieved unless the generated constraints are propagated statefully.

6 Erasure of Effect Information from ExEff

6.1 The SkelEff Language

The target of the erasure is SkelEff, which is essentially a copy of ExEff from
which all effect information ∆, type information T and coercions γ have been re-
moved. Instead, skeletons τ play the role of plain types. Thus, SkelEff is essen-
tially System F extended with term-level (but not type-level) support for algebraic
effects. Figure 10 defines the syntax of SkelEff. The type system and operational
semantics of SkelEff follow from those of ExEff.

Discussion The main point of SkelEff is to show that we can erase the effects and
subtyping from ExEff to obtain types that are compatible with a System F-like lan-
guage. At the term-level SkelEff also resembles a subset of Multicore OCaml [6],
which provides native support for algebraic effects and handlers but features no ex-
plicit polymorphism. Moreover, SkelEff can also serve as a staging area for further
elaboration into System F-like languages without support for algebraic effects and
handlers (e.g., Haskell or regular OCaml). In those cases, computation terms can

11 As will become apparent in Section 6, if we only generalize at the top over skeleton
variables, the erasure does not yield local polymorphism.
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εσv (x) = x
εσv (unit) = unit

εσv (v B γ) = εσv (v)
εσv (fun (x : T ) 7→ c) = fun (x : εσV(T )) 7→ εσc (c)

εσv (Λς.v) = Λς.εσv (v)

εσv (Λ(α : τ).v) = ε
σ·{α7→τ}
v (v)

εσv (Λδ.v) = εσv (v)
εσv (Λ(ω : π).v) = εσv (v)

εσv (v τ) = εσv (v) τ
εσv (v T ) = εσv (v)
εσv (v ∆) = εσv (v)
εσv (v γ) = εσv (v)

εσv ({return (x : T ) 7→ cr, [Opx k 7→ cOp]Op∈O}) =
{return (x : εσV(T )) 7→ εσc (cr), [Opx k 7→ εσc (cOp)]Op∈O}

εσc (v1 v2) = εσv (v1) εσv (v2)
εσc (let x = v in c) = let x = εσv (v) in εσc (c)

εσc (return v) = return (εσv (v))
εσc (Op v (y : T .c)) = Op (εσv (v)) (y : εσV(T ).εσc (c))
εσc (do x← c1; c2) = do x← εσc (c1); εσc (c2)

εσc (handle c with v) = handle εσc (c) with εσv (v)
εσc (c B γ) = εσc (c)

εσV(α) = σ(α)
εσV(T → C ) = εσV(T )→ εσC(C )

εσV(C 1 V C 2) = εσC(C 1)V εσC(C 2)
εσV(Unit) = Unit

εσV(π ⇒ T ) = εσV(T )
εσV(∀ς.T ) = ∀ς.εσV(T )

εσV(∀(α : τ).T ) = ε
σ·{α 7→τ}
V (T )

εσV(∀δ.T ) = εσV(T )

εσC(T ! ∆) = εσV(T )

εσE(ε) = ε
εσE(Γ, ς) = εσE(Γ ), ς

εσE(Γ, α : τ) = ε
σ·{α7→τ}
E (Γ )

εσE(Γ, δ) = εσE(Γ )
εσE(Γ, x : T ) = εσE(Γ ), x : εσV(T )
εσE(Γ, ω : π) = εσE(Γ )

Fig. 11: Definition of type erasure.

be compiled to one of the known encodings in the literature, such as a free monad
representation [10, 22], with delimited control [11], or using continuation-passing
style [13], while values can typically be carried over as they are.

6.2 Erasure

Figure 11 defines erasure functions εσv (v), εσc (c), εσV(T ), εσC(C ) and εσE(Γ ) for values,
computations, value types, computation types, and type environments respectively.
All five functions take a substitution σ from the free type variables α to their skeleton
τ as an additional parameter.

Thanks to the skeleton-based design of ExEff, erasure is straightforward. All
types are erased to their skeletons, dropping quantifiers for type variables and all
occurrences of dirt sets. Moreover, coercions are dropped from values and computa-
tions. Finally, all binders and elimination forms for type variables, dirt set variables
and coercions are dropped from values and type environments.

The expected theorems hold. Firstly, types are preserved by erasure.12

12 Typing for SkelEff values and computations take the form Γ èv v : τ and Γ èc c : τ .
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Theorem 6 (Type Preservation). If Γ v̀ v : T then ε∅E(Γ ) èv ε
Γ
v (v) : εΓV(T ). If

Γ c̀ c : C then ε∅E(Γ ) èc ε
Γ
c (c) : εΓC(C ).

Here we abuse of notation and use Γ as a substitution from type variables to skele-
tons used by the erasure functions.

Finally, we have that erasure preserves the operational semantics.

Theorem 7 (Semantic Preservation). If v  v v
′ then εσv (v) ≡ v εσv (v′). If c c

c′ then εσc (c) ≡ c εσc (c′).

In both cases, ≡ denotes the congruence closure of the step relation in SkelEff.
The choice of substitution σ does not matter as types do not affect the behaviour.

Discussion Typically, when type information is erased from call-by-value languages,
type binders are erased by replacing them with other (dummy) binders. For instance,
the expected definition of erasure would be:

εσv (Λ(α : τ).v) = λ(x : Unit).εσv (v)

This replacement is motivated by a desire to preserve the behaviour of the typed
terms. By dropping binders, values might be turned into computations that trig-
ger their side-effects immediately, rather than at the later point where the original
binder was eliminated. However, there is no call for this circumspect approach in our
setting, as our grammatical partition of terms in values (without side-effects) and
computations (with side-effects) guarantees that this problem cannot happen when
we erase values to values and computations to computations.

7 Related Work & Conclusion

Eff’s Implicit Type System The most closely related work is that of Pretnar [20] on
inferring algebraic effects for Eff, which is the basis for our implicitly-typed ImpEff
calculus, its type system and the type inference algorithm. There are three major
differences with Pretnar’s inference algorithm.

Firstly, our work introduces an explicitly-typed calculus. For this reason we have
extended the constraint generation phase with the elaboration into ExEff and the
constraint solving phase with the construction of coercions.

Secondly, we add skeletons to guarantee erasure. Skeletons also allow us to use
standard occurs-check during unification. In contrast, unification in Pretnar’s algo-
rithm is inspired by Simonet [24] and performs the occurs-check up to the equiva-
lence closure of the subtyping relation. In order to maintain invariants, all variables
in an equivalence class (also called a skeleton) must be instantiated simultaneously,
whereas we can process one constraint at a time. As these classes turn out to be
surrogates for the underlying skeleton types, we have decided to keep the name.

Finally, Pretnar incorporates garbage collection of constraints [19]. The aim of
this approach is to obtain unique and simple type schemes by eliminating redundant
constraints. Garbage collection is not suitable for our use as type variables and
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coercions witnessing subtyping constraints cannot simply be dropped, but must be
instantiated in a suitable manner, which cannot be done in general.

Consider for instance a situation with type variables α1, α2, α3, α4, and α5

where α1 6 α3, α2 6 α3, α3 6 α4, and α3 6 α5. Suppose that α3 does not appear
in the type. Then garbage collection would eliminate it and replace the constraints
by α1 6 α4, α2 6 α4, α1 6 α5, and α2 6 α5. While garbage collection guarantees
that for any ground instantiation of the remaining type variables, there exists a valid
ground instantiation for α3, ExEff would need to be extended with joins (or meets)
to express a generically valid instantiation like α1 t α2. Moreover, we would need
additional coercion formers to establish α1 6 (α1 t α2) or (α1 t α2) 6 α4.

As these additional constructs considerably complicate the calculus, we propose
a simpler solution. We use ExEff as it is for internal purposes, but display types
to programmers in their garbage-collected form.

Calculi with Explicit Coercions The notion of explicit coercions is not new;
Mitchell [15] introduced the idea of inserting coercions during type inference for
ML-based languages, as a means for explicit casting between different numeric types.

Breazu-Tannen et al. [3] also present a translation of languages with inheritance
polymorphism into System F, extended with coercions. Although their coercion com-
binators are very similar to our coercion forms, they do not include inversion forms,
which are crucial for the proof of type safety for our system. Moreover, Breazu-
Tannen et al.’s coercions are terms, and thus can not be erased.

Much closer to ExEff is Crary’s coercion calculus for inclusive subtyping [4],
from which we borrowed the stratification of value results. Crary’s system supports
neither coercion abstraction nor coercion inversion forms.

System FC [25] uses explicit type-equality coercions to encode complex language
features (e.g. GADTs [16] or type families [23]). Though ExEff’s coercions are
proofs of subtyping rather than type equality, our system has a lot in common with
it, including the inversion coercion forms and the “push” rules.

Future Work Our plans focus on resuming the postponed work on efficient compi-
lation of handlers. First, we intend to adjust program transformations to the explicit
type information. We hope that this will not only make the optimizer more robust,
but also expose new optimization opportunities. Next, we plan to write compilers
to both Multicore OCaml and standard OCaml, though for the latter, we must first
adapt the notion of erasure to a target calculus without algebraic effect handlers. Fi-
nally, once the compiler shows promising preliminary results, we plan to extend it to
other Eff features such as user-defined types or recursion, allowing us to benchmark
it on more realistic programs.
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