
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Extensions to Type Classes
and Pattern Match Checking

Georgios Karachalias

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Computer Science

May 2018

Supervisor:
Prof. dr. ir. Tom Schrijvers

Extensions to Type Classes
and Pattern Match Checking

Georgios KARACHALIAS

Examination committee:
Prof. dr. ir. Omer Van der Biest, chair
Prof. dr. ir. Tom Schrijvers, supervisor
Prof. dr. ir. Frank Piessens
Prof. dr. Bart Demoen
Prof. dr. Bruno C. d. S. Oliveira
(University of Hong Kong)

Dr. Jurriaan Hage
(Utrecht University)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Computer Science

May 2018

© 2018 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Georgios Karachalias, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Preface

Acknowledgments. First of all, I would like to thank my supervisor, Tom
Schrijvers. Your excellent academic advising and the time you have invested in
developing my skills made me the researcher I am today. I cannot thank you
enough.

Next, I would like to thank all my jury members, as well as Imke van Steenkiste,
Gert-Jan Bottu, and Ruben Pieters for revising this text.

I would also like to express my profound gratitude to the seasoned researchers I
have worked with: Dimitrios Vytiniotis, Simon Peyton Jones, Bruno Oliveira,
Philip Wadler, and Matija Pretnar. I am forever in debt to you for all the
insight you so graciously gave me.

I cannot omit from this list the younger researchers I have worked with during
the last four years: Gert-Jan Bottu, Koen Pauwels, and Michiel Derhaeg. For
all your ideas, enthousiasm, and eagerness to follow me on the beautiful but
difficult path of research. My only hope is that I have managed to impart to
you at least a fragment of the knowledge that has been passed on to me; we
should always pass on what we have learned.

I am also grateful to Ben Gamari for his generous support during my first steps
in the GHC development process.

Many thanks go to my colleagues Amr Hany Saleh, Klara Marntirosian,
Alexander Vandenbroucke, Amin Timany, Jesper Cockx, and Dominique
Devriese, for the beautiful working environment we managed to create in
the last four years, as well as the experiences we had outside the office. I would
really like to preserve this.

Karin Michiels, you have my gratitude for making everything seem possible,
without ever asking for anything in return. Our department at KU Leuven
would not be the same without you.

i

ii PREFACE

I would like to specially thank Dimitrios Vytiniotis once more; though brief,
you mentorship has played a major role in shaping my perspective, in life and
academia in particular. I hope I can someday offer the same to someone else.

My friends Virginia Karachalia, George Chatzopoulos, Leonidas Labropoulos,
Eleni Dourou, Erika Kotrotsou, Chryssa Zerva, Vicky Kontoura, Nikela
Papadopoulou, George Psaropoulos, Theodwra Vergou, and Ioanna Alifieraki;
thank you for being there for me.

I would also like to thank Katina, Lakis, and Panagiotis D. Vogazianos. Your
long-term support helped me get through some of the most difficult phases of
my life and aim for a Ph.D. in the first place. Katina and Panagiotis, I wish
you were both alive to see this thesis come to completion.

I owe some special thanks to the following four:
Steven, for showing me how to live, Eleftherios, for showing me how to think,
Foteini, for showing me how to care, and Erik, for showing me how to be myself.

Finally, I would like to dedicate this thesis to my family: Imke and Dharma.

Georgios Karachalias
May 2018

•

Abstract

Static typing is one of the most prominent techniques in the design of
programming languages for making software more safe and more reusable.
Furthermore, it provides opportunities for compilers to automatically generate
boilerplate code, using mathematical foundations. In this thesis, we extend
upon the design of Haskell, a general-purpose functional programming language
with strong static typing, to offer more opportunities for reasoning, abstraction,
and static code generation. More specifically, we improve upon two features:
pattern matching and type classes.

Pattern matching denotes the act of performing case-analysis on the shape of
a value, thus enabling a program to behave differently, depending on input
information. With the advent of extensions such as Generalized Algebraic Data
Types (GADTs), pattern guards, and view patterns, the task of reasoning about
pattern matching has become much more complex. Though existing approaches
can deal with some of these features, no existing algorithm can accurately reason
about pattern matching in the presence of all of them, thus hindering the ability
of the compiler to guide the development process. The first part of this thesis
presents a short, easy-to-understand, and modular algorithm which can reason
about lazy pattern matching with GADTs and guards. We have implemented
our algorithm in the Glasgow Haskell Compiler.

The second part of this thesis extends upon the design of type classes, one of
the most distinctive features of Haskell for function overloading and type-level
programming. We develop three independent extensions that lift the expressive
power of type classes from simple Horn clauses to a significant fragment of first-
order logic, thus offering more possibilities for expressive type-level programming
and automated code generation.

The first feature, Quantified Class Constraints, lifts the language of constraints
from simple Horn clauses to Harrop formulae. It significantly increases the
modelling power of type classes, while at the same time it enables a terminating

iii

iv ABSTRACT

type class resolution for a larger class of applications.

The second feature, Functional Dependencies, extends type classes with implicit
type-level functions. Though functional dependencies have been implemented in
Haskell compilers for almost two decades, several aspects of their semantics have
been ill-understood. Thus, existing implementations of functional dependencies
significantly deviate from their specification. We present a novel formalization
of functional dependencies that addresses all such problems, and give the first
type inference algorithm for functional dependencies that successfully elaborates
the feature into a statically-typed intermediate language.

The third feature, Bidirectional Instances, allows for the interpretation of class
instances bidirectionally, thus indirectly adding the biconditional connective
in the language of constraints. This extension significantly improves the
interaction of GADTs and type classes, since it allows functions with qualified
types to perform structural induction over indexed types. Moreover, under
this interpretation class-based extensions such as functional dependencies and
associated types become much more expressive.

In summary, this thesis extends upon existing and develops new type-level
features, promoting the usage of rich types that can capture and statically
enforce program properties.

Beknopte Samenvatting

Static typing is een van de meest gebruikte technieken in het ontwerp van
programmeertalen om software veiliger en meer herbruikbaar te maken. Verder
geeft het compilers de mogelijkheid om automatisch boilerplate code te genereren,
met behulp van wiskundige grondbeginselen. In deze thesis breiden we het
ontwerp uit van Haskell, een functionele programmeertaal voor algemene
doeleinden met sterke static typing, om meer mogelijkheiden tot (logische)
redenering, abstractie, en statische generatie van code te kunnen bieden. Meer
specifiek verbeteren we twee taalconcepten: pattern matching en type classes.

Pattern matching is het uitvoeren van een gevalsanalyse op de vorm van
een waarde. Hierdoor kan een programma verschillende gedragen vertonen,
afhankelijk van de ingevoerde informatie. Door de opkomst van extensies zoals
Generalised Algebraic Data Types (GADTs), pattern guards, en view patterns
is het redeneren over pattern matching veel complexer geworden. Hoewel
bestaande aanpakken al om kunnen gaan met sommige van deze taalconcepten,
is er geen bestaand algoritme dat precieze redeneringen kan geven over pattern
matching met inachtneming van alle eigenschappen, waardoor het vermogen
van de compiler om het ontwikkelingsproces te sturen gehinderd wordt. Het
eerste deel van deze thesis stelt een kort, begrijpelijk, en modulair algoritme
voor, dat kan redeneren over lazy pattern matching met GADTs en guards. We
hebben ons algoritme geïmplementeerd in de Glasgow Haskell Compiler.

Het tweede deel van deze thesis geeft een uitbreiding van het ontwerp van
type classes, een van de meest karakteristieke taalconcepten van Haskell voor
function overloading en het programmeren op type-niveau. We ontwikkelen drie
onafhankelijke extensies die de expressieve kracht van type classes verheffen van
het niveau van simpele Horn-clausules naar een significant gedeelte van eerste-
orde-logica, waardoor we meer mogelijkheden voor expressieve programmering
op type-niveau, en geautomatiseerde generatie van code bieden.

Het eerste taalconcept, Quantified Class Constraints, tilt de taal van constraints

v

vi BEKNOPTE SAMENVATTING

van simpele Horn-clausules naar Harrop formules. Dit zorgt voor een significante
toename in de modelleringskracht van type classes, en tegelijkertijd maakt
het terminatie voor type class resolutie mogelijk voor een grotere klasse van
applicaties.

Het tweede taalconcept, Functional Dependencies, breidt type classes uit
met impliciete functies op type-niveau. Hoewel functional dependencies
al bijna twee decennia geïmplementeerd zijn in Haskell compilers, vatten
bestaande implementaties niet alle aspecten van de semantiek. Zodoende
wijken de bestaande implementaties van functional dependencies significant af
van hun specificaties. Wij presenteren een nieuwe formalisatie van functional
dependencies die al deze problemen aanpakt, en we geven het eerste type
inference algoritme voor functional dependencies dat deze taalconcept succesvol
uitwerkt tot een statically-typed intermediaire taal.

Het derde taalconcept, Bidirectional Instances, staat een interpretatie van class
instances in beide richtingen toe, waardoor het indirect een biconditionaire
verbinding toevoegt aan de taal van constraints. Deze extensie verbetert de
interactie van GADTs en type classes significant, omdat het functies met qualified
types toestaat om structurele inductie uit te voeren over indexed types. Bovendien
worden class-based extensies zoals functional dependencies en associated types
door deze interpretatie veel expressiever.

Samengevat, deze thesis presenteert uitbreidingen van bestaande, en ontwikke-
ling van nieuwe type-level taalconcepten. Deze taalconcepten bevorderen het
gebruik van rich types die programma-eigenschappen kunnen vatten, en statisch
kunnen toepassen.

Translated from the English abstract by Imke van Steenkiste and revised by Tom Schrijvers.

Contents

Abstract iii

Contents vii

1 Introduction 1

1.1 Type Systems . 1

1.2 Thesis Overview and Scientific Output 6

I Pattern Match Checking 11

2 Background 12

2.1 Algebraic Data Types and Pattern Matching 12

2.2 Pattern Matching . 14

2.3 Generalized Algebraic Data Types 19

2.4 Problem Statement . 20

3 Pattern Match Checking 29

3.1 Our Approach . 29

3.2 Phase 1: Pattern Desugaring 33

3.3 Phase 2: Pattern Match Checking 38

vii

viii CONTENTS

3.4 Meta-theory . 50

3.5 Related Work . 54

3.6 Scientific Output . 60

4 GHC Implementation 63

4.1 Alternative Formalization . 64

4.2 Empty Case Expressions . 69

4.3 Performance Improvements . 75

4.4 The Oracle . 80

4.5 Evaluation . 82

4.6 Scientific Output . 85

II Type Classes 87

5 Background 88

5.1 Polymorphism . 88

5.2 System F: The Polymorphic Lambda Calculus 91

5.3 Type Reconstruction and Elaboration 95

5.4 Type Classes: Ad-hoc Polymorphism in Haskell 107

6 The Basic System 117

6.1 Extended System F . 117

6.2 Syntax . 121

6.3 Typing and Elaboration into System F 123

6.4 Type Inference with Elaboration into System F 127

6.5 Meta-theoretical Properties . 135

6.6 Scientific Output . 137

CONTENTS ix

7 Quantified Constraints 139

7.1 Motivation . 139

7.2 Declarative Specification . 144

7.3 Type Inference with Elaboration 152

7.4 Termination of Resolution . 157

7.5 Related Work . 159

7.6 Scientific Output . 162

8 Functional Dependencies 165

8.1 Motivation . 166

8.2 Logical Reading of Functional Dependencies 172

8.3 Type Checking . 177

8.4 Target Language: System FC 182

8.5 Type Inference and Elaboration into System FC 189

8.6 Meta-theory . 198

8.7 Related Work . 204

8.8 Scientific Output . 205

9 Bidirectional Instances 207

9.1 Motivation . 207

9.2 Technical Challenges . 212

9.3 Bidirectional Instances . 216

9.4 Meta-theory . 220

9.5 Scientific Output . 222

10 Conclusion 225

10.1 Aim of the Thesis . 225

10.2 Summary . 226

x CONTENTS

10.3 Ongoing and Future Work . 230

A Basic System: Additional Judgments 239

A.1 Program and Declaration Typing 239

B Functional Dependencies: Additional Material 241

B.1 Constraint Schemes, CHRs and System FC 241

B.2 Poly-kinded, Generic Type Projections 244

B.3 Elaboration of Top-level Value Bindings 245

Index 247

Bibliography 251

List of Publications 261

Chapter 1

Introduction

“In the beginning, the Universe was created. This had made a lot of
people very angry and been widely regarded as a bad move.”

—Douglas Adams, The Hitchhiker’s Guide to the Galaxy, Vol. II

Our society’s need for software has grown exponentially over the past years:
from planes to mobile phones, most everyday tasks nowadays rely heavily on
programs. As a consequence, both the size and the complexity of all these
systems follows the same exponential curve. Unfortunately, the more complex
the software, the more difficult it is to develop, maintain, reason about, and
extend. Hence, the development process has become more slow and error-prone,
pointing at a dire need for means to improve programmer productivity. One
of the most common techniques in the design of programming languages for
achieving reusability (and thus shorter and more concise code) while at the
same time eliminating software bugs early in the development process is through
type systems.

1.1 Type Systems

The term “type system” refers to the formal classification of language objects in
different categories, each category supporting a limited set of operations. Such
a category is referred to as a type: a type can be understood as the set of all
expressions it classifies. For example, a numeric literal 5 can be assigned type
Int (integer), while a character literal 'c' can be assigned type Char (character).

1

2 INTRODUCTION

More importantly, a type system also specifies a set of rules (typing rules)
that assign types to more complex structures (e.g., functions, modules, etc.),
using the types of their components. For example, an expression (x ∗ y) can
be assigned type Int, if the operands x and y both have type Int. Formal
specifications of type-systems are usually given by a collection of Gentzen-style
inference rules (Gentzen, 1935) like the following:

e1 :: Int e2 :: Int
e1 + e2 :: Int

Add

Add is a name that allows us to refer to the rule.1 The judgments above the
line are referred to as the premises of the rule and the judgment below the line
is the conclusion of the rule. Notation e :: σ can be read as “expression e has
type σ”. Hence, the above rule can be read as “if expression e1 has type Int and
expression e2 has type Int then expression e1 + e2 has type Int”.

The main motivation for a programming language designer to employ a type
system is for preventing operations from being used with values for which their
behavior is unspecified, that is, logical errors. For example, the expression
(42 + 'c') is—according to most languages–ill-typed, since only numeric values
can be added.

In essence, a type system specifies the—otherwise implicit—categories the
programmer uses to capture data structures and enforces properties that software
artefacts are expected to have, aiming to reduce the number of logical errors or
bugs.

1.1.1 Dynamic vs. Static Typing

Ensuring that a program is well-typed (with respect to the type system
specification of the language it is written in) can happen statically (at compile-
time), dynamically (at run-time), or as a combination of both static and dynamic
checks.

Static Type Checking Programming languages with static type checking
verify the type-safety—that is, the absence of run-time errors—of a program
entirely at compile-time, before the program runs. For example, ML’s
type checker would reject function g

let g(x) = ’c’ + x;;

1Rule names are often omitted if not referred to.

TYPE SYSTEMS 3

since ’c’ does not have a numeric type and the addition with an integer x
would lead to a run-time error. Hence, strong static typing can eliminate
a large class of bugs at compile-time. Furthermore, once type-checking
is complete, compilers for statically-typed languages can often erase all
type information before run-time, eliminating the need for run-time type
checks that can introduce an overhead.

Dynamic Type Checking On the other hand, programming languages that
employ dynamic type checking verify the type-safety of a program at
run-time. That is, each object is associated with a run-time representation
of its type, which is used to ensure that is only used in well-specified ways.
A prime example of a programming language that features a dynamic
type system is Python. As an example of dynamic type checking, the
corresponding g function in Python

def g(x): return (’c’ + x)

would not raise a compiler-time error. Instead, type-errors will arise at
run-time, if g is actually used. For example, the call g(1) results in the
following run-time type-error:

unsupported operand type(s) for +: ‘int’ and ‘str’

Obviously, each kind of typing has its benefits and this is precisely why different
programming languages make different design choices on the matter. Static
typing is (usually) more restrictive, which can make statically-typed languages
cumbersome to use for small, everyday tasks. For example, the expression

if true then 5 else ’c’

would be rejected by most of the mainstream statically-typed languages, since
the two branches of the if-then-else clause have different types. Yet, it is not
difficult to see that the above expression is no threat to safety; it evaluates to 5.
On the other hand, large-scale projects can easily become difficult to implement,
extend, and debug, in which case a static type system can significantly aid the
development process.

1.1.2 Static Typing

We mainly focused on one of the benefits of static typing in the previous section:
type safety. In fact, static typing can be beneficial during software development in
numerous ways, the most significant benefits being safety, reusability, automated
code generation, and optimization.

4 INTRODUCTION

Safety As we have briefly mentioned already, the most prominent benefit of
employing a static type system is to ensure that programs are type-safe. Static
type checking can detect software errors (bugs) early in the development process,
and thus save development time and reduce debugging and testing costs.

Reusability Moreover, through static typing one can write a single imple-
mentation of a language object, e.g., a function, and call it at multiple sites,
on arguments of possibly different types. This notion is widely known as
generic programming (Musser and Stepanov, 1989) and can significantly reduce
development time through code reusability. Though the same effect can be
achieved in the absence of typing, a static type system can also verify that
generic functions are used in a type-safe way.

Automated Code Generation Another advantage of static typing is the
possibility of automated code generation. Compilers can use type information to
automatically generate repetitive pieces of code (boilerplate), thus freeing more
time for the programmer to focus on more interesting parts of the program.
Furthermore, automated code generation further contributes to safety, since it is
often based on mathematical foundations and is thus safer than manually-written
code.

Optimizations Finally, another benefit of static typing is the opportunities
it offers for code optimization. If the types of objects handled by a program
are known statically (at compile-time), the compiler can specialize function
implementations to improve run-time performance, or select efficient run-time
representations for complex data structures.

1.1.3 Type-level Features

Though the previous section discussed several benefits of static typing that can
significantly decrease development time and increase safety, it is often argued
that static typing can also delay the development process. Indeed, dynamically-
typed languages offer a lot of freedom to the developer, while statically-typed
languages restrict the usage of language constructs. For usability purposes, they
compensate for this lack of freedom with an extensive collection of features. We
briefly discuss some of the most popular of these features below.

Polymorphism Maybe the most basic and at the same time the most useful
extension that has been studied is the notion of polymorphism. A function is

TYPE SYSTEMS 5

said to be polymorphic in the type of its argument if it can operate on arguments
of multiple types. As an example, a function that reverses a simply-linked list
can be polymorphic on the type of the list’s elements. This allows one to write
a single definition for list reversal, and reuse it on lists containing elements of
different types.

Function Overloading Another useful feature that has been extensively
studied is that of function overloading. A function name is said to be overloaded
if it denotes multiple implementations that can be referred to using the same
name. One of the most common manifestations of overloading is numeric
operators “+”, “−”, etc., which can be used on integers, floating-point numbers,
etc.

Type Invariants and Dependent Types One powerful feature that often
appears in formal languages and proof assistants is that of dependent types. In
this setting, types can refer to terms, thus allowing many program properties
to be captured in types that can then be statically verified by the language
compiler. For example, one can annotate the type of lists with their (integer)
length n. This allows for example the system to verify that a function that
reverses a list computes a list of the same length as the input.

In the presence of these more expressive types, the system can also be extended
with more features for type-level computation. For example, the concatenation
of two length-indexed lists computes a list of length equal to the sum of the
input lists. Hence, using such rich types leads to a need for more means for
type-level computation, such as type-level functions.

Indeed, programming languages with more expressive type systems usually
complement the collection of features they support with features for type-level
computation.

1.1.4 The Challenge of Type Reconstruction

One of the most significant challenges of static typing is the ability to omit
explicit type-annotations. Though types can aid readability by documenting
the meaning of language objects, their size can grow disproportionally (with
respect to the size of the program) in languages with expressive static typing.
Hence, to address this issue, most language compilers employ type inference (or
type reconstruction), a procedure which statically reconstructs omitted types of
language entities.

6 INTRODUCTION

Unfortunately, the more expressive the type system, the more challenging it
is to statically infer types. In fact, type inference for many popular type-level
extensions is proven to be undecidable in the total absence of explicit type
annotations. Thus, a highly active area of research is concerned with the
development of expressive type systems for which types can be inferred by
requiring a minimal set of type annotations.

In summary, the urgent need for rich types that can contribute to more accurate
modelling and more safety guarantees is undermined by the lack of corresponding
type inference methods. Though the problem is known to be hard, there is a
lot of room for improvement, either by improving type inference algorithms for
existing features, or by developing new type inference algorithms for existing or
new features.

1.2 Thesis Overview and Scientific Output

The overall goal of this thesis is the extension of existing and the development
of new type-level features, promoting the usage of rich types that can capture
and statically enforce program properties.

1.2.1 Aim of the Thesis and Language of Choice

More specifically, in this thesis we extend upon the design of Haskell, a general-
purpose functional programming language with strong static typing. Haskell
is the ideal starting point for developing novel language extensions, because it
has always played a leading role in programming language and type systems
research, and constitutes the state-of-the-art in powerful static type systems
with type inference in the presence of little or no annotations at all. Moreover,
in its position as an influential language it has had considerable impact on the
design of many other programming languages, and its developments are closely
followed by the programming language community.

In this thesis we improve upon the design of two of the most popular features
of Haskell: pattern matching and type classes. Our aim is to offer more
opportunities for static enforcement of program properties, better abstractions
for expressive modelling, and more possibilities for automatic code generation.

THESIS OVERVIEW AND SCIENTIFIC OUTPUT 7

1.2.2 Part I: Pattern Match Checking

The first part of this thesis is concerned with lazy pattern matching and the
techniques we have developed to reason about its properties. More specifically,
Part I is split in three chapters (2, 3, and 4). A significant portion of Part I
draws its material from the following publication:

Georgios Karachalias, Tom Schrijvers, Dimitrios Vytiniotis and Simon
Peyton Jones (2015). GADTs Meet Their Match: Pattern-matching
Warnings That Account for GADTs, Guards, and Laziness. In
Proceedings of the 20th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’15, pp. 424-436, Vancouver, BC,
Canada, August 31-September 2, 2015.

Chapter 2 presents the notion of pattern matching and all its relevant properties,
as well as the problem we wish to solve: pattern match checking in the presence
of GADTs, guards, and laziness. This problem we address in Chapter 3,
where we formalize our pattern match checking algorithm. Finally, Chapter 4
provides technical information concerning the implementation of the algorithm
of Chapter 3 in the Glasgow Haskell Compiler.

1.2.3 Part II: Type Classes

The overall goal of Part II is to enhance type classes, by borrowing ideas from
first-order predicate logic. This we achieve by introducing three standalone
extensions to the formalization of type classes: Quantified Class Constraints,
Functional Dependencies, and Bidirectional Type Class Instances. Each of the
aforementioned extensions is inspired by a different aspect of first-order logic.

Background In order to present the new features in a comprehensive way, we
develop our extensions in Part II incrementally. This allows us to focus on the
feature-specific details and avoid needless repetition. More specifically, Part II
presents several calculi, shown in Figure 1.1.

First, Chapter 5 elaborates on the notion of type checking, type inference,
type-directed elaboration, and type classes. In the process, it presents two
existing calculi: System F (Section 5.2), and the Hindley-Damas-Milner system
(HM) (Section 5.3). Next, Chapter 6 develops a formalization of HM with
type classes, which serves as the basis for our extensions in the subsequent
chapters. Before presenting the specification of this calculus—which we refer to
as the “Basic System”—in Section 6.3, we first develop an extension of System

8 INTRODUCTION

Figure 1.1 Calculi Dependency
System F

(Section 5.2)

HM
(Section 5.3)

Type Classes
(Chapter 6)

QCs
(Chapter 7)

FDs
(Chapter 8)

F + Datatypes
(Section 6.1)

System FC
(Section 8.4)

BIs
(Chapter 9)

F with algebraic data types and recursive let-bindings, given in Section 6.1.
The extended System F serves as the target language we elaborate type classes
into, using an inference-with-elaboration algorithm presented in Section 6.4.

Due to the non-parametric nature of two of our extensions, Section 8.4 also
presents System FC (Sulzmann et al., 2007a), an extension of System F with
GADTs and open, non-parametric type-level functions. Then, we present our
extensions in Chapters 7, 8, and 9.

Type Class Extensions For each of the features we present, we develop a
complete formalization, including the extensions to (a) the specification of
typing and elaboration, (b) the type inference algorithm, (c) the typing-directed
elaboration algorithm, and (d) the statement of the most interesting meta-
theoretical properties. Since the judgments for each calculus often have the
same appearance, we distinguish between them by marking judgments related
to each calculus with the corresponding colors in Figure 1.1.

Extension 1: Quantified Class Constraints The first extension, Quantified
Class Constraints, is presented in Chapter 7. Quantified constraints raise the
expressive power of type classes to a subset of first-order logic known as the
universal fragment of Hereditary Harrop logic (Harrop, 1956). The contents of
Chapter 7 have been published in the following article:

THESIS OVERVIEW AND SCIENTIFIC OUTPUT 9

Gert-Jan Bottu, Georgios Karachalias, Tom Schrijvers, Bruno C. d. S.
Oliveira and Philip Wadler (2017). Quantified Class Constraints. In
Proceedings of the 10th ACM SIGPLAN International Symposium on
Haskell, Haskell ’17, pp. 148–161, Oxford, UK, September 7–8, 2017.

From the user’s point of view, the merit of quantified constraints manifests
itself in terms of more expressive modelling and in terms of terminating type
inference for a bigger class of programs.

Extension 2: Functional Dependencies The second extension, Functional
Dependencies, is presented in Chapter 8. Functional Dependencies have partially
been formalized in the literature but we are the first to develop a complete
formalization for them, including their elaboration into a statically-typed core
language. According to our formalization, functional dependencies extend
Haskell types with type-level functions and the logic of constraints with type
equalities. The contents of Chapter 8 have been published in the following
article:

Georgios Karachalias and Tom Schrijvers (2017). Elaboration on
Functional Dependencies: Functional Dependencies Are Dead, Long Live
Functional Dependencies! In Proceedings of the 10th ACM SIGPLAN
International Symposium on Haskell, Haskell ’17, pp. 133–147, Oxford,
UK, September 7–8, 2017.

Functional dependencies significantly raise the expressive power of type classes,
enabling type-level computation and more accurate modelling.

Extension 3: Bidirectional Instances The third extension, Bidirectional
Instances, constitutes part of ongoing work and is presented in Chapter 9.
This feature extends type classes’ expressive power by elaborating type class
instances bidirectionally, effectively adding the biconditional connective to their
logical interpretation.

This feature taps into the semantics of type classes, improving upon their
interaction with a multitude of type-level features; type-level functions and
GADTs can be combined with the bidirectional interpretation of type classes to
model strictly more programs than in plain Haskell.

10 INTRODUCTION

1.2.4 Other Publications

Finally, related to the contents of this thesis but not included, is the following
publication:

Amr Hany Saleh, Georgios Karachalias, Matija Pretnar, and Tom
Schrijvers (2018). Explicit Effect Subtyping. In Proceedings of the 27th
European Symposium on Programming, ESOP ’18, Thessaloniki, Greece,
April 16–19, 2018.

In this work, we develop an explicitly-typed polymorphic core calculus for
algebraic effect handlers with a subtyping-based type-and-effect system. Appeals
to subtyping are reified in explicit casts with coercions that witness the subtyping
proof, similarly to the type-equality coercions appearing in System FC. Moreover,
our calculus employs an additional namespace, type skeletons, that captures the
structural part of a type, enabling a straightforward type- and coercion-erasure
procedure.

Part I

Pattern Match Checking

11

Chapter 2

Background

The first part of the thesis is concerned with pattern matching, and particularly
reasoning about its properties. In this introductory chapter we present pattern
matching, and introduce all relevant notions and terminology that we use in
Chapters 3 and 4. More specifically, the structure of this chapter is the following:

Section 2.1 presents algebraic data types and introduces the notion of pattern
matching. Section 2.2 elaborates on pattern matching, and introduces the
notions of pattern match compilation and checking. Section 2.3 introduces
generalized algebraic data types and discusses pattern matching in their presence.
Lastly, Section 2.4 elaborates on the problem we aim to solve: reasoning about
lazy pattern matching in the presence of GADTs and guards.

2.1 Algebraic Data Types and Pattern Matching

Algebraic Data Types (ADTs) made their first appearance in programming
languages in the 1970s as part of Hope (Burstall et al., 1980), a rather small
functional language, but quite important in the development of functional
programming. Nowadays, they are supported by almost all industrial strength
functional languages (e.g., Haskell and OCaml).

Definition An ADT is an ordered pair, consisting of a type constructor T
together with a set of data constructors K . As an example, consider the

12

ALGEBRAIC DATA TYPES AND PATTERN MATCHING 13

definition of booleans in Haskell:

data Bool = False | True

Type constructor Bool captures the new type and data constructors False and
True are the only terms that inhabit type Bool.

ADTs can also have type parameters, types that are known in the object-oriented
world as generics (Musser and Stepanov, 1989). A prime example of a generic
data type in Haskell is that of singly-linked lists:1

data List a = Nil | Cons a (List a)

A term of type (List a) is a singly-linked list of elements of type a. For example,
(Cons 1 (Cons 2 (Cons 3 Nil))) has type (List Int), and represents list [1, 2, 3].

Types a and (List a) in the definition of Cons are the types of its term-level
arguments, which are known as the fields of the constructor. Note that in ADT
notation for (T a) we omit the return type of the data constructors (which are
nothing more than term-level functions), since it is uniquely determined. For
example, the types of data constructors Nil and Cons are:

Nil :: ∀a. List a
Cons :: ∀a. a→ List a→ List a

The universal quantifier ∀ in both types indicates that they are parametric over
type parameter a (i.e., they behave uniformly on values of any type). In short,
the shape of a term of type (List a) is independent of the instantiation of type
parameter a. As we illustrate below in Section 2.3, this is not the case for
Generalized ADTs. We discuss parametricity in more detail in Section 5.1.

Pattern Matching Just like we can construct expressions of type (T a) by
applying one of T ’s data constructors to appropriate arguments, we can also
deconstruct a term of type (T a) by means of pattern matching. As an example,
consider function reverse, which reverses a list:

reverse :: ∀a. [a]→ [a]
reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

1Throughout the rest of the thesis we use the built-in syntax of Haskell lists, where List is
a mixfix operator [_] and Cons is an infix operator (_ : _):

data [a] = [] | a : [a]

14 BACKGROUND

Function reverse is defined by means of pattern matching on its argument of
type [a]. Each line is called a clause: a clause consists of a left-hand side which
comprises patterns to be matched against, and a right-hand side which is to be
evaluated if matching against the patterns is successful.

In reverse, the first clause covers cases where the argument is an empty list [],
and the second covers cases where the argument is constructed by means of
constructor (:). Function (++) performs standard list concatenation.

Algebraic data types are closed, in the sense that the only way to create a term
of type (T a) is by means of its data constructors. Hence, reverse above covers
all possible shapes a list can have.

The benefit of pattern matching is twofold:

1. Discrimination. A value of type [a] can be constructed by any of the
two data constructors of the list definition. Pattern matching allows a
function to behave differently depending on the constructors used in the
construction of the scrutinee (i.e., the expression being matched against
the patterns).

2. Deconstruction. Pattern matching also binds subterms (data constructor
fields) to fresh term variables (e.g. x and xs in the definition of reverse),
and brings them in scope for the right-hand side.

Note that in ML-style pattern matching (e.g., in Haskell or OCaml), patterns
are linear: each variable can appear in a pattern only once. In this thesis, we
are only concerned with linear patterns.

There are several important aspects of pattern matching, which we elaborate
on in the next section.

2.2 Pattern Matching

We now focus on pattern matching and all its aspects that are relevant to
this thesis. More specifically, compilation of pattern matching is discussed in
Section 2.2.1, and reasoning about pattern matching in Section 2.2.2.

2.2.1 Compilation of Pattern Matching

It is common for functional programming languages to offer multiple term-level
pattern matching constructs. Each is more appropriate for different applications

PATTERN MATCHING 15

but they can all be elaborated into a single kind of pattern matching construct:
case expressions. The process of elaborating complex forms of pattern matching
into simple case expressions is known as compilation of pattern matching and it
is the subject of this section.

Case Expressions The most primitive form of pattern matching is that of a
case expression. For example, reverse, which was given by two clauses, each one
matching against the function argument, can alternatively be written using a
case expression as follows:

reverse xss = case xss of
[] → []
(x : xs) → reverse xs ++ [x]

A case expression behaves similarly to separate function clauses but it allows
matching only a single expression (the scrutinee) against one or more patterns.

Nested Patterns Another feature of pattern matching is the ability to match
against the so-called nested patterns. As an example, consider the following
function which returns the second element of a list:

second :: ∀a. [a]→ a
second xss = case xss of

(x : (y : ys)) → y

In this case, the tail of the list pattern is not a simple variable (as was xs in
the definition of reverse). Instead, it is another list pattern (y : ys). Nested
patterns allow the binding of arbitrarily nested subterms to variables using
pattern matching.

Pattern Matching with Multiple Arguments Function clauses can also match
against multiple arguments at once, a possibility not directly offered by case
expressions. For example, function zip below uses pattern matching against two
arguments to combine two lists into a list of tuples (element-wise):

zip :: ∀a. ∀b. [a]→ [b]→ [(a, b)]
zip [] [] = []
zip (a : as) (b : bs) = (a, b) : zip as bs

Compilation of Pattern Matching All forms of pattern matching we have
discussed until now can be elaborated into a simple form with only nested case
expressions, where clauses consist only of non-nested patterns.

16 BACKGROUND

Such a form is much easier to reason about and makes the transition from
a full-blown functional programming language to bytecode simpler. As an
example, consider function zip, which can be compiled into the following form:

zip xss yss = case xss of
[] → case yss of

[] → []
(x : xs) → case yss of

(y : ys) → (x, y) : zip xs ys

Nested pattern matches of the above form resemble tree-like automata and are
known in the literature as decision trees (Maranget and Para, 1994).2

Evaluation Strategy An important factor for the compilation of pattern
matching is the evaluation strategy of the language at hand. In a strict language
(like ML), the scrutinee of a match is fully evaluated before pattern matching
is performed. In a lazy language (like Haskell), the scrutinee is evaluated as
much as needed for pattern matching to proceed. In Haskell specifically, pattern
matching is performed top-to-bottom, left-to-right.

To illustrate why the evaluation-order matters, consider function f :

f _ False = 1
f True True = 2
f False True = 3

Functions f1 and f2 are two (out of many) possible ways we can compile f :

f1 x y = case x of
True → case y of { True → 2; False → 1 }
False → case y of { True → 3; False → 1 }

f2 x y = case y of
True → case x of { True → 2; False → 3 }
False → 1

f1 matches against x first, while f2 matches against y first. In a language with
strict semantics like ML, f1 and f2 have the same semantics (f2 can also be
considered more performant, since it performs fewer run-time checks). In a lazy
language like Haskell though, we can easily discriminate between the two: take

2Another target language that is often used for compilation of pattern matching is that
of backtracking automata (Maranget and Para, 1994). Yet, the technique used in the major
Haskell implementations (notably GHC) targets decision trees. Hence, we refer the reader to
the work of Maranget and Para (1994) for more details concerning backtracking automata.

PATTERN MATCHING 17

for example call (f ⊥ False). The call (f1 ⊥ False) diverges, while (f2 ⊥ False)
returns 1: f2 is the right compilation of f with respect to the Haskell semantics.
Thus, pattern matching in lazy languages introduces one more effect in addition
to the two (discrimination and deconstruction) we discussed in Section 2.1:
evaluation.

Column-based Compilation It is not our goal to give a detailed account of
lazy pattern match compilation here; this is a well-studied problem and several
algorithms have been introduced to address it (Augustsson, 1985; Wadler, 1987a;
Maranget, 1992; Le Fessant and Maranget, 2001, etc.).

Nevertheless, it is worth mentioning that for pattern matching to be compiled
efficiently, most algorithms perform a column-based traversal of the clauses of
a match. This allows potential grouping of cases, and avoidance of matching
against the same expression twice (see for example function f1 above, which
combines the cases where x is True into one clause).

This approach—though crucial for the performance of the compiled match—
deviates significantly from the semantics of source-level pattern matching, which
are usually given in a top-to-bottom, left-to-right manner.

2.2.2 Pattern Matching Anomalies

The Anomalies Given that pattern matching essentially performs a case-by-
case analysis, there are two anomalies that can naturally arise: (a) some cases
may not be covered, and (b) some cases may be completely subsumed by others.
Therefore, the notions of missing and redundant clauses naturally arise:

Missing clauses. Pattern matching of a sequence of clauses is exhaustive if
every well-typed argument vector matches one of the clauses. For example,
function zip from Section 2.2.1

zip [] [] = []
zip (a : as) (b : bs) = (a, b) : zip as bs

is not exhaustive because there is a well-typed call that does not match
any of its clauses (take for example (zip [] [True])). Hence, a clause of the
form zip [] (b : bs) = e is missing.

Redundant clauses. If there is no well-typed value that matches the left-hand
side of a clause, the right-hand side of the clause can never be accessed
and the clause is redundant. For example, repeating this equation would

18 BACKGROUND

be redundant:
zip (x : xs) (y : ys) = . . .

Since the application of a partial function to a value outside its domain results in
a run-time error, the presence of non-exhaustive pattern matches often indicates
a programmer error. Similarly, having redundant clauses in a match is almost
never intentional and indicates a programmer error as well.

Good compilers report missing patterns, to warn the programmer that the
function is only partially defined. They also warn about completely-overlapped,
and hence redundant, equations. Although technically optional for soundness,
these warnings are incredibly useful in practice, especially when the program is
refactored (i.e., throughout its active life), with constructors being added and
removed from the data type.

Detecting the Anomalies The detection of the aforementioned anomalies can
be performed at compile-time and is a key asset during software development
and refactoring. There are numerous coverage checking algorithms which we
discuss in detail in Section 3.5, but for a more formal specification of the
anomalies and their detection we now briefly discuss some aspects of the work
of Maranget (2007).

Firstly, we need to formally specify what it means for a value v to match against
a pattern p; in these cases we say that the value is an instance of the pattern.
More specifically, Maranget (2007) defines the instance relation as follows:3

Definition 1 (Instance Relation). Given any pattern p and a value v such that
p and v are of a common type, the instance relation p � v is defined as follows:

x � v
K p1 . . . pn � K v1 . . . vn iff pi � vi (i ∈ [1 . . . n])

In short, a value v is an instance of a pattern p when there exists a substitution
θ (which maps all variables in p to values), such that θ(p) = v.

The relation can be easily generalized to pattern vectors, which capture the
left-hand side of clauses:

p1 . . . pn � v1 . . . vn iff pi � vi (i ∈ [1 . . . n])

In conventional pattern matching, a pattern match can be viewed as a pattern
matrix P , where each row of the matrix represents a clause.

3Maranget (2007) also covers or-patterns but we omit them here for simplicity.

GENERALIZED ALGEBRAIC DATA TYPES 19

Thus, a clause (v1 . . . vn) is specified as missing from a pattern matrix P if
the following holds

((pi1 . . . pin) 6� (v1 . . . vn)) ∀(pi1 . . . pin) ∈ P

That is, a clause is missing if it is not an instance of any of the clauses. Of
course, if no such value vector exists, then the match is deemed exhaustive.

Similarly, for any clause (pi1 . . . pin), if every value vector (v1 . . . vn) that
is an instance of it is also an instance of a previous clause then the clause is
considered redundant (all cases it covers are covered by previous clauses).

Though these definitions are precise for structural pattern matching and have
been put to good use by existing formalizations of compilation and coverage
checking algorithms (e.g., Maranget and Para (1994); Maranget (2007)), they
do not take into account modern pattern matching extensions. This issue is
addressed in the remainder of Part I.

2.3 Generalized Algebraic Data Types

Generalized Algebraic Data Types4 (GADTs) are a generalization of ADTs where
data constructors can bind arbitrary existential type variables and constraints
(e.g., class or type equality constraints). In recent years, they have appeared in
many programming languages, including Haskell (Peyton Jones et al., 2006),
OCaml (Garrigue and Normand, 2011) and Ωmega (Sheard, 2004).

As an example of a GADT, consider length-indexed vectors:

data Nat :: ? where
Zero :: Nat
Succ :: Nat → Nat

data Vec :: Nat → ?→ ? where
VN :: Vec Zero a
VC :: a→ Vec n a→ Vec (Succ n) a

On the left, we define type-level natural numbers Nat. Type Nat is automatically
promoted into a kind and data constructors Zero and Succ into type constructors
of the same name, using the GHC extension DataKinds (Yorgey et al., 2012).

Length-indexed vectors Vec utilize Nat to index data constructors VN and VC
with the appropriate length: VN represents the empty vector (and thus has
length Zero), and VC represents concatenation (and thus constructs vectors
of length Succ n, where n is the length of the sublist). GADTs allow for

4Also known as recursive data types (Xi et al., 2003) and first-class phantom types (Cheney
and Hinze, 2003).

20 BACKGROUND

more expressive types and stronger static enforcement of program properties.
Consider function vzip:

vzip :: Vec n a→ Vec n b→ Vec n (a, b)
vzip VN VN = VN
vzip (VC x xs) (VC y ys) = VC (x, y) (vzip xs ys)

Though the definition of vzip is the same as that of zip we presented earlier
(Section 2.2), its type is much richer: the fact that the length of the input
vectors is the same (and so is the length of the result) is captured in the type
of vzip: all types are indexed by the same length n.

Existentials and Local Constraints As we mentioned earlier, GADTs are a
special case of something more general: data constructors that bind arbitrary
existential type variables and constraints. That is, the above definition of Vec
can be equivalently written as:5

data Vec (n :: Nat) (a :: ?) where
VN :: (n ∼ Zero) ⇒ Vec n a
VC :: (n ∼ Succ n′) ⇒ a→ Vec n′ a→ Vec n a

This syntax makes it clear that both VN and VC construct terms of type
Vec n a, but each one refines index n differently, via local constraints ((n ∼ Zero)
for V N and (n ∼ Succ n′) for VC).

Such constraints must be satisfied when constructing a term using VN or VC ,
and consequently are provided when we pattern match against a term of type
Vec n a. In the terminology of Vytiniotis et al. (2011), local constraints are
wanted in the former case and given in the latter.

Finally, notice the existentially-quantified variable n′ which appears in local
constraint (n ∼ Succ n′), as well as pattern argument type Vec n′ a: variable n′
does not appear in result type Vec n a. Both existentially-quantified variables
and local constraints complicate reasoning about pattern matching, as we discuss
next.

2.4 Problem Statement

The question of determining exhaustiveness and redundancy of pattern matching
has been well studied, but almost exclusively in the context of purely structural

5Following the Haskell convention, we use infix operator “∼” to denote type equality.

PROBLEM STATEMENT 21

matching (see for example the work of Maranget (2007)). Haskell has moved well
beyond simple constructor patterns though: it has overloaded literal patterns,
guards, view patterns, pattern synonyms, GADTs, etc. In the remainder of
this chapter we illustrate how these features complicate the task of detecting
pattern matching anomalies (inexhaustiveness and redundancy). In particular,
we identify three new challenges:

• The challenge of GADTs and, more generally, of patterns that bind
arbitrary existential type variables and constraints (Section 2.4.1).

• The challenge of guards and guard-like features (Section 2.4.2).

• The challenge of laziness (Section 2.4.3).

These issues are all addressed individually in the literature but to our knowledge
we are the first to tackle all three in a single unified framework (Chapter 3),
and implement the unified algorithm in a production compiler (Chapter 4).

2.4.1 The Challenge of GADTs

Apart from the well-studied difficulties they pose for type inference (Schrijvers
et al., 2009; Vytiniotis et al., 2011), GADTs also introduce a qualitatively-new
element to the task of determining missing or redundant patterns. Consider for
example function vzip from Section 2.3:

vzip :: Vec n a→ Vec n b→ Vec n (a, b)
vzip VN VN = VN
vzip (VC x xs) (VC y ys) = VC (x, y) (vzip xs ys)

In contrast to function zip of Section 2.2, vzip is exhaustive; a call with arguments
of unequal length is simply ill-typed. As this indicates, only a type-aware
algorithm can correctly decide whether or not the pattern matches of a function
definition are exhaustive.

Indeed, although GADTs have been supported by the Glasgow Haskell Compiler
(GHC) since March 2006 (Peyton Jones et al., 2006), the pattern match check
was never extended to take GADTs into account, resulting in many user bug
reports. Although there have been attempts to improve the algorithm (see
tickets6 #366 and #2006), all were essentially ad-hoc and handled only specific
cases.

6Tickets are GHC bug reports, recorded through the project’s bug/issue tracking system:
ghc.haskell.org/trac/ghc.

https://ghc.haskell.org/trac/ghc/ticket/366
https://ghc.haskell.org/trac/ghc/ticket/2006
ghc.haskell.org/trac/ghc

22 BACKGROUND

2.4.2 The Challenge of Guards

Another pattern matching feature that poses difficulties for the detection of
missing and redundant clauses is that of guards. Haskell guards come in all
shapes and sizes; we discuss their most commonly used forms below.

Boolean Guards Consider this function which computes the absolute value of
an integer:

abs1 :: Int → Int
abs1 x | x < 0 = −x

| otherwise = x

Function abs1 makes use of Haskell’s boolean-valued guards, introduced by
“|”. If the guard returns True, the clause succeeds and the right-hand side is
evaluated; otherwise pattern-matching continues with the next clause.

It is clear to the reader that this function is exhaustive, but not so clear to
a compiler. Notably, otherwise is not a keyword; it is simply a value defined
by otherwise = True. The compiler needs to know that fact to prove that the
pattern-matching is exhaustive. But, what about this version?

abs2 :: Int → Int
abs2 x | x < 0 = −x

| x ≥ 0 = x

Here the exhaustiveness of pattern-matching depends on knowledge of the
properties of < and ≥. In general, the exhaustiveness for pattern matches
involving guards is clearly undecidable; for example, it could depend on a deep
theorem of arithmetic. Nevertheless, we would like the compiler to do a good
job in common cases such as abs1 , and perhaps abs2 .

Pattern Guards GHC extends guards further with pattern guards (Erwig and
Peyton Jones, 2000). For example:

append xs ys
| [] ← xs = ys
| (p : ps) ← xs = p : append ps ys

The pattern guard matches a specified expression (here xs in both cases) against
a pattern; if matching succeeds, the guard succeeds, otherwise pattern matching
drops through to the next clause.

PROBLEM STATEMENT 23

Let Bindings Another form of guard is that of let-bindings. In contrast to
pattern guards, matching in let-bindings is lazy. As an example, consider
functions f and g below:

f :: a→ Maybe a→ a g :: a→ Maybe a→ a
f x y | Just y′ ← y = y′ g x y | let Just y′ = y = y′

| Nothing ← y = x | let Nothing = y = x

Function f takes a value of type a (default) and a value of type Maybe a. If the
second value is of the form Just y′ then y′ is returned; otherwise the default
value is returned.

The syntax of function g is identical, but instead of pattern guards, it uses
let-bindings. Calls (f 42 (Just 1)) and (g 42 (Just 1)) behave identically (they
both return 1); the difference in the behavior of f and g becomes apparent if
we pass Nothing as the second argument:

Guards> f 42 Nothing
42

Guards> g 42 Nothing
*** Exception: Irrefutable pattern failed for pattern Just y’

In the first call, Nothing is matched against Just y′. Matching fails so the
second guard is tried. Since this match is successful, the default value 42 is
returned.

The situation for g is quite different: a let-binding in a guard position does not
actually perform pattern matching. Instead, it binds the result of matching to
new pattern variables. In short, the first clause of g above is equivalent to the
following:7

g x y | y′ ← fromJust y = y′

| . . .

which does not force the evaluation of y. Hence, the first clause matches
independently of the value of y and the result is equivalent to fromJust y.

View Patterns View patterns (Wadler, 1987b; Erwig and Peyton Jones, 2000)
are a guard-like extension of pattern matching which allows matching against the
result of function applications directly. For example, we can use view patterns to

7Where function fromJust :: Maybe a→ a unsafely extracts a value from a term of type
Maybe a. For details see library Data.Maybe.

24 BACKGROUND

define a variant of find which takes a default element as an additional argument:

find ′ :: a→ (a→ Bool)→ [a]→ a
find ′ def p (find p→ Just x) = x
find ′ def p _ = def

where function (find :: (a→ Bool)→ [a]→ Maybe a) returns the first element
x of the list for which p x is True.

The view pattern (find p→ Just x) is matched successfully against an argument
e if (find p e) matches against (Just x). View patterns make reasoning about
pattern matching quite challenging since they introduce (a) arbitrary expressions
in pattern matching (e.g., function application (find p e)), and (b) non-linear
patterns: the second argument (p) is used in the subsequent pattern (find p→
Just x). The above patterns are not strictly speaking non-linear, but clearly
there is a left-to-right dependency between the patterns.

Another interesting aspect of view patterns is that they can appear in arbitrarily
nested positions within a pattern. For example, one can write function map—
which applies a function to all elements of a list—using view patterns as follows:

map :: (a→ b)→ [a]→ [b]
map f [] = []
map f (x : map f → xs) = f x : xs

In summary, view patterns offer great flexibility to programmers but introduce
several challenges to pattern match checking. Indeed, we know of no coverage
algorithm that can give accurate warnings in the presence of view patterns and
guards.

Literal Patterns Another known challenge of pattern matching in the ML
family is that of literal patterns. First, we can have enumerably many literal
patterns as part of the same signature. For example, Int is inhabited by all
numbers in the range

−2147483648 . . . − 1 0 1 . . . 2147483647

In the case of Integers, the problem becomes worse: they are infinitely many.
Haskell further complicates matters with overloaded literals. For example, in
Haskell one can write the following definition:

h (Just 4) = True
h 5 = False

h has the type
(Eq a,Num a)⇒ Maybe a→ Bool

PROBLEM STATEMENT 25

Though this definition seems ill-typed, it can be accepted by the compiler in
the presence of a (Num (Maybe a)) instance:

instance Num a⇒ Num (Maybe a)

The idea behind overloaded literals is that the pattern represents an equality
check (hence the (Eq a) constraint above). For example, the second clause
above checks whether the argument is equal to (fromInteger 5).

Though there exists prior work on reasoning about literal patterns (e.g., (Sestoft,
1996)), we know of no work that deals with overloaded literals, or with simple
literals in the presence of all the features we have discussed.

Summary All the aforementioned guard and guard-like extensions pose
a challenge to determining the exhaustiveness and redundancy of pattern-
matching, because pattern matching is no longer purely structural. Every real
compiler must grapple with this issue, but no published work gives a systematic
account of how to do so. This is the challenge we address in Chapter 3.

2.4.3 The Challenge of Laziness

Haskell is a lazy language, and it turns out that laziness interacts in an
unexpectedly subtle way with pattern matching checks. Here is an example,
involving two GADTs:

data F a where
F1 :: F Int
F2 :: F Bool

data G a where
G1 :: G Int
G2 :: G Char

h :: F a→ G a→ Int
h F1 G1 = 1
h _ _ = 2

Given h’s type signature, its only well-typed non-bottom arguments are F1 and
G1 respectively. So, is the second clause for h redundant? No. Consider the
call (h F2 ⊥), where ⊥ is a diverging value. Pattern matching in Haskell works
top-to-bottom, and left-to-right. So we try the first equation, and match the
pattern F1 against the argument F2. The match fails, so we fall through to the
second equation, which succeeds, returning 2.

This subtlety is not restricted to GADTs. Consider:

g :: Bool → Bool → Int
g _ False = 1
g True False = 2
g _ _ = 3

26 BACKGROUND

Is the second equation redundant? It certainly looks redundant: if the second
clause matches, then the first clause would have matched too, so g cannot
possibly return 2. The right-hand side of the second clause is certainly dead
code.

Surprisingly, though, it is not correct to remove the second equation. What does
the call (g ⊥ True) evaluate to, where ⊥ is a looping value? Answer: the first
clause fails to match, so we attempt to match the second. That requires us to
evaluate the first argument of the call, ⊥, which will loop. But if we omitted
the second clause, (g ⊥ True) would return 3.

In short, even though the right-hand side of the second equation is dead code,
the equation cannot be removed without (slightly) changing the semantics of
the program. As far as we know, this observation has not been made before,
although previous work by Maranget (2007) would quite sensibly classify the
second equation as non-redundant.

The same kind of thing happens with GADTs. With the same definitions for F
and G, consider

k :: F a→ G a→ Int
k F1 G1 = 1
k _ G1 = 2

Is the second equation redundant? After all, anything that matches it would
certainly have matched the first equation (or caused divergence if the first
argument was ⊥). So the RHS is definitely dead code; k cannot possibly return
2. But removing the second clause would make the definition of k inexhaustive:
consider the call (k F2 ⊥).

What’s more, Haskell extends the language of patterns with two syntactic forms
which offer more control over the evaluation order in pattern matching: strict
patterns and lazy patterns. Both syntactic forms further complicate reasoning
about pattern matching; we illustrate the delicacies of each form below.

Strict Patterns Strict patterns (also known as bang patterns) allow a
programmer to explicitly mark a match to have non-lazy semantics. For
example, consider function idl:

idl [] = []
idl (!x : xs) = x : idl xs

Function idl performs the identity transformation on lists, but it forces both
their spine and their elements to be evaluated, via strict pattern !x.

PROBLEM STATEMENT 27

The semantics of strict patterns can be seen if we compare the calls
(length (idl [⊥,⊥])) and (length (id [⊥,⊥])), where id is the standard, lazy
identity function. The former diverges, while the latter returns 2.

Notice that a strict pattern does not require the expression matched against
it to be fully evaluated; it requires evaluation to WHNF only. Subsequently,
annotating a pattern that is already in WHNF with a (!) has no effect (e.g.,
(x : xs) vs. !(x : xs)).

Lazy Patterns Lazy patterns (also known as irrefutable patterns) capture the
opposite semantics: the argument is not evaluated, even if the pattern is in
WHNF. For example, given function

add (∼ (x, y)) = x+ y

matching will succeed, even in the call (add ⊥) (though the overall result will
of course be ⊥). That is, a lazy pattern matches lazily against the provided
argument. Equivalently, one could write function add as follows:

add t = x+ y
where
x = fst t
y = snd t

Summary The bottom line is this: if we want to report accurate warnings,
we must take the order of evaluation into account. Plain Haskell is lazy which
is a challenge on its own, and features like GADTs, strict patterns, and lazy
patterns complicate matters more. We illustrate how to address this challenge
in the next chapter.

Chapter 3

Pattern Match Checking

Despite the runaway popularity of GADTs, and other pattern-matching features
such as view patterns, boolean guards, pattern guards, overloaded literals, and
let-bindings, no production compiler known to us gives accurate pattern-match
overlap and exhaustiveness warnings when these features are used. Certainly
the state-of-the-art Haskell compiler (GHC) does not. In this chapter we solve
this problem by developing a pattern match checking algorithm which takes all
the aforementioned features into account.

The chapter is structured as follows: Section 3.1 describes our approach in
intuitive terms. Next, Sections 3.2 and 3.3 present all formal aspects of our
algorithm. Section 3.4 states the most significant meta-theoretical properties of
the algorithm of Section 3.3. Section 3.5 discusses a large body of related work,
concerned with pattern matching and pattern match checking in particular.
Finally, Section 3.6 summarizes the main results presented in the chapter.

3.1 Our Approach

In this section we describe our approach in intuitive terms, showing how it
addresses each of the three challenges of Section 2.4. We subsequently formalize
the algorithm in Sections 3.2 and 3.3.

Throughout the remainder of Part I we make the assumption that the pattern-
match warning pass runs once type inference is complete. At this stage the
syntax tree is richly decorated with type information, but has not yet been
desugared. Warnings will therefore refer to the program text written by the

29

30 PATTERN MATCH CHECKING

Figure 3.1 Algorithm Outline

P11 . . .P1n

P21 . . .P2n

. . .

Pm1 . . .Pmn

translate~p

translate~p

. . .

translate~p

p11 . . . p1n

p21 . . . p2n

. . .

pm1 . . . pmn

patVecProc

patVecProc

. . .

patVecProc

C1

D1

C2

D2

Cm

Dm

U0

Um

U1

U2

Um−1

user, and not some radically-desugared version. Indeed, in our implementation
(which we elaborate on in Chapter 4) the pattern match warning generator is
triggered just before desugaring each pattern match.

3.1.1 Algorithm Outline

The most common use of pattern matching in Haskell is when a function is
defined using multiple clauses:

f p11 . . .p1n = e1 Clause 1
. . . = . . .

f pm1 . . .pmn = em Clause m

From the point of view of pattern matching, the function name “f” is incidental:
all pattern matching in Haskell can be regarded as a sequence of clauses, each
clause comprising a pattern vector and a right-hand side. For example, a case
expression also has multiple clauses (each with only one pattern); a Haskell
pattern matching lambda has a single clause (perhaps with multiple patterns);
and so on.

As we discussed in Section 2.2.1, in Haskell pattern matching on a sequence of
clauses is carried out top-to-bottom, and left-to-right. In our function f above,

OUR APPROACH 31

Haskell matches the first argument against p11 , the second against p12 and so on.
If all n patterns in the first clause match, the right-hand side is chosen; if not,
matching resumes with the next clause. Our algorithm, illustrated in Figure 3.1,
works in the same way: it analyzes the clauses one by one, from top to bottom.
Function translate~p desugars source patterns into a small yet expressive pattern
language; we elaborate on this translation in Section 3.2 below. The analysis
patVecProc of an individual clause takes a compact symbolic representation of
the vector of argument values Ui−1 that are possibly submitted to the clause,
and partitions these values into three different groups:

C The values that are covered by the clause; that is, values that match the
clause without divergence, so that the right-hand side is evaluated.

D The values that possibly diverge when matched against the clause, so
that the right-hand side is not evaluated, but neither are any subsequent
clauses matched.

U The remaining uncovered values; that is, the values that fail to match the
clause, without divergence.

As illustrated in Figure 3.1, the input to the first clause represents all possible
values, and each subsequent clause is fed the uncovered values of the preceding
clause. For example, consider the function zip from Section 2.2:

zip :: [a]→ [b]→ [(a, b)]
zip [] [] = []
zip (a : as) (b : bs) = (a, b) : zip as bs

We start the algorithm with U0 = {_ _}, where we use “_” to stand for “all
values”. Processing the first clause gives:

C1 = {[] []}
D1 = {⊥ _, [] ⊥}
U1 = {[] (_ : _), (_ : _) _}

The values that fail to match the first clause, and do so without divergence, are
U1, and these values are fed to the second clause. Again we divide the values
into three groups:

C2 = {(_ : _) (_ : _)}
D2 = {(_ : _) ⊥}
U2 = {[] (_ : _), (_ : _) []}

Now, U2 describes the values that fail to match either clause. Since it is non-
empty, the clauses are not exhaustive, and a warning should be generated. In
general we generate three kinds of warnings:

32 PATTERN MATCH CHECKING

1. If the function is defined by m clauses, and Um is non-empty, then the
clauses are non-exhaustive, and a warning should be reported. It is usually
helpful to include the set Um in the error message, so that the user can
see which patterns are not covered.

2. Any clause i for which Ci and Di are both empty is redundant, and can
be removed altogether.

3. Any clause i for which Ci is empty, but Di is not, has an inaccessible
right-hand side even though the equation cannot be removed. This is
unusual, and deserves its own special kind of warning; again, including Di

in the error message is likely to be helpful.

Each of C ,U , and D is a set of value abstractions, a compact representation of
a set of value vectors that are covered, uncovered, or diverge respectively. For
example, the value abstraction (_ : _) [] stands for value vectors such as

(True : []) []
(False : (True : [])) []

and so on. Notice in D1,D2 that our value abstractions must include ⊥, so that
we can describe values that cause matching to diverge.

3.1.2 Handling Constraints

Next we discuss how these value abstractions may be extended to handle GADTs.
Recall vzip from Section 2.3:

vzip :: Vec n a→ Vec n b→ Vec n (a, b)
vzip VN VN = VN
vzip (VC x xs) (VC y ys) = VC (x, y) (vzip xs ys)

What do the uncovered sets Ui look like? Naively they would look like that for
zip:

U1 = {VN (VC _ _), (VC _ _) _ }
U2 = {VN (VC _ _), (VC _ _) VN}

To account for GADTs we add type constraints to our value abstractions, to
give this instead:

U1 = { VN (VC _ _) . (n ∼ Zero, n ∼ Succ n2)
, (VC _ _) _ . (n ∼ Succ n2) }

Each value tuple abstraction in the set now comes with a type equality constraint
(e.g. n ∼ Succ n2), and represents values of the specified syntactic shape, for

PHASE 1: PATTERN DESUGARING 33

which the equality constraint is satisfiable at least for some substitution of its
free variables. The first abstraction in U1 has a constraint that is unsatisfiable,
because n cannot simultaneously be equal to both Zero and Succ n2. Hence the
first abstraction in U1 represents the empty set of values and can be discarded.
Discarding it, and processing the second clause gives

U2 = {(VC _ _) VN . (n ∼ Succ n3, n ∼ Zero)}

Again the constraint is unsatisfiable, so U2 is empty, which in turn means that
the function is exhaustive.

We have been a bit sloppy with binders (e.g., where is n2 bound?), but we will
tighten that up in Section 3.3. The key intuition is this: the abstraction u . ∆
represents the set of values whose syntactic shape is given by u, and for which
the type constraint ∆ is satisfied.

3.1.3 Guards and Oracles

In the previous section we extended value abstractions with a conjunction of
type-equality constraints. It is straightforward to take the idea further, and
add term-equality constraints. Then the final uncovered set for function abs2
of Section 2.4.2 might look like this:

U2 = {x . (False = x < 0,False = x ≥ 0)}

We give the details of how we generate this set in Section 3.3, but intuitively the
reasoning goes like this: if neither clause for abs2 matches, then both boolean
guards must evaluate to False. Now, if the compiler knows enough about
arithmetic, it may be able to determine that the constraint is unsatisfiable, and
hence that U2 is empty, and hence that abs2 is exhaustive.

For both GADTs and guards, the question becomes this: is the constraint ∆
unsatisfiable? And that is a question that has been extremely well studied,
for many particular domains (see for example Zeno (Sonnex et al., 2012) and
HipSpec (Claessen et al., 2013)). For the purposes of this chapter, therefore, we
treat satisfiability as a black box, or oracle: the algorithm is parameterized over
the choice of oracle. This modular separation of concerns is extremely helpful,
and is a key contribution of our approach (see Section 3.6).

3.2 Phase 1: Pattern Desugaring

As illustrated in Figure 3.1, before a clause is processed by function patVecProc,
we translate it into a concise “core” pattern language; this is the language the

34 PATTERN MATCH CHECKING

Figure 3.2 Source and Target Patterns, Guards, and Clauses

f, g, x, y, . . . ::= 〈term variable〉
K ::= 〈data constructor〉
e ::= . . . expression

P ::= x | _ | K ~P | l | ol | x+ l | e→ P | !P | ∼ P source pattern
G ::= e | P← e | let P = e source guard
C ::= ~P | ~G→ e source clause

p, q ::= x | K ~p | G target pattern
G ::= ~p← e target guard
c ::= ~p→ e target clause

algorithm operates on. The translation of source patterns into the core language
is the focus of this section.

Section 3.2.1 provides the formal syntax of both source and target patterns,
and Section 3.2.2 elaborates on the translation from the former to the latter.

3.2.1 Syntax

The syntax of source and target patterns presented in Figure 3.2. We use meta-
variables g, f, x, y to denote term variables and K to denote data constructors.
By convention, we use f, g to denote functions, and x, y to denote any kind of
pattern variable. Expressions are denoted by e and we leave their syntax open.
As we illustrate in Section 3.3, our algorithm is indifferent towards the shape of
expressions; the checker gives rise only to specific kinds of expressions.

Source Patterns The syntax of source patterns P is given in Figure 3.2 and
captures the most interesting forms of patterns and guards supported by GHC.

A source pattern P can be of one the following: a term variable x, a wildcard
pattern _, a constructor pattern K ~P, a literal l, an overloaded literal ol,
an n+k pattern (x + l) (Peyton Jones, 2003), a view pattern e → P (Wadler,
1987b; Erwig and Peyton Jones, 2000), a strict pattern !P, a lazy pattern ∼ P.
The meaning of each pattern is the one we gave in intuitive terms earlier in
Sections 2.4.2 and 2.4.3.

PHASE 1: PATTERN DESUGARING 35

A guard can take one of three forms. It can be a boolean guard e, a pattern
guard (P← e), or a let-binding (let P = e). Boolean guards have the expected
meaning: for matching to proceed, expression e must evaluate to True. The
difference between the operational semantics of pattern guards and let-bindings is
concentrated in the evaluation order they follow, as we discussed in Section 2.4.2:
pattern guards are checked as soon as execution meets them, while let-bindings
are evaluated lazily.

Finally, source clauses C take the form ~P | ~G → e, that is, a pattern vector
followed by a guard vector. This might seem a bit restrictive at first glance,
since standard Haskell allows for multiple guard vectors after the same pattern
vector:

C ::= ~P | ~G1
| . . .
| ~Gn

Nevertheless, the two forms are equally expressive. The following n clauses have
the same semantics as the clause C above:

C1 = ~P | ~G1
· · ·

Cn = ~P | ~Gn

Target Patterns A target clause c is a vector of patterns ~p and a right-hand
side e, which should be evaluated if the pattern matches. Here, a “vector” ~p of
patterns is an ordered sequence of patterns, similarly to a source pattern vector:
it is either empty, written ε, or is of the form p ~p.

A pattern p is either a variable pattern x, a constructor pattern K ~p or a guard
G. One difference between source guards G and target guards G is that the
latter match an expression against a pattern vector, not a pattern. Yet, the
intended semantics is that the pattern vector ~p consists of exactly one pattern,
possibly followed by several guard patterns.

Furthermore, the syntax of target guards greatly generalizes that of source
patterns in that it allows a guard to occur arbitrarily nested inside a pattern.
This allows us to desugar literal patterns and view patterns. For example,
consider the Haskell function

f ('x', []) = True
f _ = False

The equality check against the literal character 'x' must occur before matching
the second component of the tuple, so that the call (f ('y',⊥)) returns False

36 PATTERN MATCH CHECKING

Figure 3.3 Pattern, Guard, and Clause Desugaring
translatep :: P→ ~p Pattern Translation

translatep(x) = x
translatep(_) = y

translatep(K ~P) = K (translate~p(~P))
translatep(l) = x (translateg(x == l))
translatep(ol) = x (translateg(x == from ol))
translatep(n+ k) = x (translateg(x >= k)) (n← x− k)
translatep(f → P) = x (translateg(P← f x))
translatep(!P) = x (()← seq x ()) (translateg(P← x))
translatep(∼ P) = x (translateg(let P = x))

translateg :: G→ ~p Guard Translation

translateg(e) = True ← e
translateg(P← e) = translatep(P)← e

translateg(let P = e) = (y ← (λP. y) e) (ȳ = vars(P))

translatec :: C→ ~p Clause Translation

translatec(~P|~G) = translate~p(~P) translate~g(~G)

rather than diverges. With our syntax we can desugar f to these two clauses:

(y (True ← y=='x'), []) → True
z → False

Note the nested guard True ← y=='x'. The complete formal translation of
source patterns to target patterns is given in Section 3.2.2 below.

This unusual design choice simplifies the implementation of the algorithm (see
Section 3.3.2).

3.2.2 From Source to Target Patterns

The translation from source to target clauses is performed by function translatec.
Mutually recursive auxiliary functions translatep and translateg translate
patterns and guards, respectively. All three are presented in Figure 3.3. We
discuss each in detail below.

PHASE 1: PATTERN DESUGARING 37

Pattern Translation Translation of variable patterns x is trivial and wildcards
_ are translated into fresh pattern variables, for uniformity. Translation
of constructor patterns is straightforward: we translate all arguments and
concatenate the results.1

Literal patterns l are translated in two steps: first, we generate a fresh term
variable x, and second, we add a guard (x == l), to ensure that matching
succeeds only if x is equal to l. Overloaded literals ol are treated similarly, but
we first call function from, to capture the expected semantics. For example,
matching an expression e against pattern (5 :: Int) corresponds to an equality
check between e and (fromInteger 5).2

n+ k patterns are translated according to their expected semantics. A value x
matches an n+ k pattern if x is greater or equal to k, and the difference x− k
is bound to variable n.

View patterns f → P directly correspond to pattern guards: a view pattern
f → P is matched by a value x if f x matches against pattern P. Fresh variable
x captures the actual argument and the matching of f x against P is captured
in the additional pattern guard.

In order to translate strict patterns !P in a semantics-preserving manner, we
introduce a call to the built-in function seq. Fresh variable x is used to bind
the argument, pattern guard (()← seq x ()) ensures that the argument is in
Weak Head Normal Form (WHNF), and guard (P ← x) captures the actual
match. Notice that the call to seq is essential for cases where pattern P forces
no evaluation (e.g., when P is a variable).

Finally, irrefutable patterns are translated into a (non-forcing) variable x,
accompanied by a (lazy) let-binding. This preserves the semantics we discussed
in Section 2.4.2.

Guard Translation Guards are translated using function translateg, the
definition of which is also given in Figure 3.3.

The first clause handles boolean guards; a boolean guard is satisfied if it evaluates
to True. For example, the clauses of abs1 (Section 2.4.2) would desugar to:

x (True ← x < 0) → −x
x (True ← otherwise) → x

1A task performed by function translate~p, whose trivial definition we omit.
2Where function fromInteger :: Num a⇒ Integer → a is the overloaded method found in

the Num type class.

38 PATTERN MATCH CHECKING

The second clause handles pattern guards (P← e), by simply translating the
pattern P. Worth mentioning is that our initial formalization3 treated pattern
guards slightly differently:

translateg(P← e) = (p← e) ~p where p ~p = translatep(P)

Indeed, function translatep always (by construction) gives rise to a non-guard
pattern followed by a list of guards. This allowed us to keep the shape of target
guards similar to that of source pattern guards without loss of expressivity.
Nevertheless, this design choice added needless complexity in our implementation
and was hence abandoned.

Finally, the third clause handles (lazy) let-bindings. In essence, a lazy let-
binding (let P = e) always matches, independently of the shape of pattern P:
a non-exhaustive let-binding will manifest itself only when it is forced. Thus,
each variable y in P is bound to the corresponding component, without forcing
any evaluation.

For example, the following clause

f xss | (let (x : xs) = xss) = . . .

will be translated as follows:

xss (x← (λ(x : xs). x) xss) (xs ← (λ(x : xs). xs) xss)

Functions head ≡ (λ(x : xs). x) and tail ≡ (λ(x : xs). xs) are non-exhaustive,
but the let-binding covers all cases.

Clause Translation Last, clause translation is implemented in terms of
auxiliary functions translate~p and translate~g. The former translates all patterns
in a pattern vector and concatenates the results and the latter behaves similarly
on guard vectors. The translation of a clause (~P|~G) is simply the concatenation
of the translation of its subparts ~P and ~G.

3.3 Phase 2: Pattern Match Checking

We now turn to the formal design of our pattern match checking algorithm.
First, Section 3.3.1 introduces the additional constructs used by the algorithm;
the algorithm itself is explained at length in the remainder of the chapter.

3See the extended version of the work of Karachalias et al. (2015): https://gkaracha.
github.io/papers/gadtpm_ext.pdf.

https://gkaracha.github.io/papers/gadtpm_ext.pdf
https://gkaracha.github.io/papers/gadtpm_ext.pdf

PHASE 2: PATTERN MATCH CHECKING 39

Figure 3.4 Value Abstractions

a, b, a′, b′, . . . ::= 〈type variable〉
T ::= 〈type constructor〉

τ ::= a | τ1 → τ2 | T τ | . . . monotype
Γ ::= ε | Γ, a | Γ, x : τ typing environment

S ,C ,U ,D ::= v value set abstraction
v ::= Γ ` ~u . ∆ value vector abstraction
u,w ::= x | K ~u value abstraction

∆ ::= ε | ∆ ∪∆ | Q | x ≈ e | x ≈ ⊥ constraint
Q ::= τ1 ∼ τ2 | . . . type constraint

3.3.1 Value Abstractions

Figure 3.4 extends the syntax of target patterns we gave in Figure 3.2 with the
additional constructs we use in the formalization of the algorithm in the next
section.

The syntax for monotypes, type constraints and typing environments is entirely
standard. We are explicit about the binding of type variables in Γ, but
throughout Part I we assume they all have kind ∗, so we omit their kind
ascriptions.4

Value abstractions play a central role in our work, and stand for sets of values.
They come in three forms:

• A value set abstraction S is a set of value abstractions v. We use an
overline v (rather than an arrow) to indicate that the order of items in S
does not matter.

• A value vector abstraction v has the form Γ ` ~u . ∆. It consists of a
vector ~u of syntactic value abstractions, and a constraint ∆. The type
environment Γ binds the free variables of ~u and ∆.

• A syntactic value abstraction u is either a variable x, or is of the form
K ~u, where K is a data constructor.

4As we explain in Chapter 4, our implementation supports higher kinds, and indeed kind
polymorphism.

40 PATTERN MATCH CHECKING

A value abstraction represents a set of values, using the intuitions of Section 3.1.1.
We formalize these sets precisely in Section 3.4.

Finally, a constraint ∆ is a conjunction of either type constraints Q or term
equality constraints x ≈ e, and in addition strictness constraints x ≈ ⊥.
Strictness constraints are important for computing divergent sets for which we
have used informal notation in the previous sections: For example, the value
set abstraction {(_ : _) ⊥} is formally represented as {Γ ` (x : y) z . z ≈ ⊥},
for some appropriate environment Γ.

Type constraints include type equalities τ1 ∼ τ2 but can also include other
constraints introduced by pattern matching or type signatures (examples would
be type class constraints or refinements (Rondon et al., 2008; Vazou et al.,
2014)). We leave the syntax of Q deliberately open.

3.3.2 Clause Processing

Our algorithm performs an abstract interpretation of the concrete dynamic se-
mantics of Haskell pattern matching, and manipulates value vector abstractions
instead of concrete value vectors. It follows the scheme described in Section 3.1
and illustrated in Figure 3.1. The key question is how patVecProc works; that
is the subject of this section, and constitutes the heart of the chapter.

Initialization

As shown in Figure 3.1, the algorithm is initialized with a set U0 representing
“all values”. For every function definition of the form:

f :: ∀~a. τ1 → . . .→ τn → τ
f p11 . . . p1n = . . .

. . .
f pm1 . . . pmn = . . .

the initial call to patVecProc will be with a singleton set:

U0 = {~a, (x1 : τ1), . . . , (xn : τn) ` x1 . . . xn . ε}

As a concrete example, the pattern match clauses of function zip of type
∀a. ∀b. [a]→ [b]→ [(a, b)] from Section 2.2.1 will be initialized with

U0 = {a, b, x1 : [a], x2 : [b] ` x1 x2 . ε}

Notice that we use variables xi, rather than the underscores used informally in
earlier sections, so that we can record their types in Γ, and constraints on their
values in ∆.

PHASE 2: PATTERN MATCH CHECKING 41

Figure 3.5 Clause Processing

patVecProc(~p, S) = 〈C ,U ,D〉

patVecProc (~p,S) = 〈C ,U ,D〉 where
C ={w | v ∈ S,w ∈ C ~p v, `Sat w}
U ={w | v ∈ S,w ∈ U ~p v, `Sat w}
D ={w | v ∈ S,w ∈ D ~p v, `Sat w}

The Main Algorithm

Figure 3.5 gives the details of patVecProc. Given a pattern vector ~p and an
incoming set S of value vector abstractions, patVecProc computes the sets
C ,U ,D of covered, uncovered, and diverging values respectively. As Figure 3.5
shows, each is computed independently, in two steps. For each value vector
abstraction v in S :

• Use syntactic structure: an auxiliary function (C,U and D) identifies the
subset of v that is covered, uncovered, and divergent, respectively.

• Use type and term constraints: filter the returned set, retaining only those
members whose constraints ∆ are satisfiable.

We describe each step in more detail, beginning with the syntactic function for
covered sets, C .

Computing the Covered Set

The function C ~p v refines v into those vectors that are covered by the pattern
vector ~p. It is defined inductively over the structure of ~p. Depending on the
inputs, there are six cases to consider, each described below.

Rule CNil The first rule handles the case when both the pattern vector and
the value vector are empty. In this case the value vector is trivially covered:

C ε (Γ ` ε . ∆) = { Γ ` ε . ∆ }

Rule CConCon Next, Rule CConCon handles cases where both the pattern
and value vector start with constructors Ki and Kj respectively. If the

42 PATTERN MATCH CHECKING

constructors differ (Ki 6= Kj), then this particular value vector is not covered
so the covered set is empty:

C ((Ki ~p) ~q) (Γ ` (Kj ~u) ~w . ∆) = ∅ (Ki 6= Kj)

If the constructors are the same (Ki = Kj), then we proceed recursively with
the subterms ~p and ~u and the suffixes ~q and ~w:

C ((Ki ~p) ~q) (Γ ` (Ki ~u) ~w . ∆) = map (kcon Ki) (C (~p ~q) (Γ ` ~u ~w . ∆))

Since we use a single recursive call where the pattern vectors are “flattened”,
we recover the original structure afterwards with auxiliary function kcon Ki,
defined thus:

kcon K (Γ ` ~u ~w . ∆) = Γ ` (K ~u) ~w . ∆

where ~u matches the arity of K .

Rule CConVar The third rule handles the case when the pattern vector starts
with constructor Ki and the value vector with variable x:

C ((Ki ~p) ~q) (Γ ` x ~u . ∆) = C ((Ki ~p) ~q) (Γ′ ` (Ki ~y) ~u . ∆′)
where ~y#Γ ~a#Γ (x : τx) ∈ Γ Ki :: ∀~a. Q⇒ ~τ → τ

Γ′ = Γ,~a, ~y : ~τ ∆′ = ∆ ∪Q ∪ τ ∼ τx ∪ x ≈ Ki ~y

In this case we refine x to the most general abstraction that matches the
constructor, Ki ~y, where the variables ~y are fresh for Γ, written ~y#Γ. Once the
constructor shape for x has been exposed, Rule CConCon will fire to recurse
into the pattern and value vectors. The constraint (∆′) used in the recursive
call consists of the union of the original ∆ with:

• Q; this is the constraint bound by the constructor Ki :: ∀~a. Q⇒ ~τ → τ ,
which may for example include type equalities (in the case of GADTs).

• x ≈ Ki ~y; this records a term-level equality in the constraint that could
be used by guard expressions.

• τ ∼ τx, where τx is the type of x in the environment Γ, and τ is the return
type of the constructor. This constraint will be useful when dealing with
GADTs, as we explain in Section 3.3.3.

PHASE 2: PATTERN MATCH CHECKING 43

Rule CVar The fourth rule applies when the pattern vector starts with a
variable pattern x. This matches any value abstraction u, so we can proceed
inductively in ~p and ~u:

C (x ~p) (Γ ` u ~u . ∆) = map (ucon u) (C ~p (Γ, x : τ ` ~u . ∆ ∪ x ≈ u))
where x#Γ Γ È u : τ

However, x may appear in some guard in the rest of the pattern, for example:

f x y | Nothing ← lookup x env = . . .

To expose the fact that x is bound to u in subsequent guards (and in the
right-hand side of the clause, see Section 3.3.6), Rule CVar adds x ≈ u to the
constraints ∆, and correspondingly extends Γ to maintain the invariant that Γ
binds all variables free in ∆. Finally, auxiliary function map (ucon u) prefixes
each of the recursive results with u:

ucon u (Γ ` ~u . ∆) = Γ ` u ~u . ∆

Rule CGuard The last case deals with the case where the first pattern in the
pattern vector is a guard (p← e):

C ((p← e) ~p) (Γ ` ~u . ∆) = map tail (C (p ~p) (Γ, y : τ ` y ~u . ∆ ∪ y ≈ e))
where y#Γ Γ È e : τ

We make a recursive call to C adding p to the front of the pattern vector, and a
fresh variable y to the front of the value abstraction. This variable y has the
same type τ as e, and we add a term-equality constraint y ≈ e to the constraint
set to record that y is bound to e. Finally, map tail removes the guard value
from the returned value vector:

tail (Γ ` u ~u . ∆) = Γ ` ~u . ∆

Finally it is worth noting that the C ~p v function always returns an empty or
singleton set, but we use the full set notation for uniformity with the other
functions.

Next, we discuss the other two functions (U and D), which have a similar
structure.

Computing the Uncovered Set

The function U ~p v returns those vectors that are not covered by the pattern
vector ~p. Similarly to function C, function U consists of six clauses, which we
describe below.

44 PATTERN MATCH CHECKING

Rule UNil When both the pattern vector and value vector are empty then (as
we have seen in Rule CNil) the value vector is covered. Hence, the uncovered
set is empty:

U ε (Γ ` ε . ∆) = ∅

Rule UConCon Cases where both the pattern and value vector start with
data constructors Ki and Kj are handled by Rule CConCon. If the head
constructors match (Ki = Kj), we simply recurse:

U ((Ki ~p) ~q) (Γ ` (Ki ~u) ~w . ∆) = map (kcon Ki) (U (~p ~q) (Γ ` ~u ~w . ∆)

If not (Ki 6= Kj), the value vector abstraction is uncovered, so we return it:

U ((Ki ~p) ~q) (Γ ` (Kj ~u) ~w . ∆) = { Γ ` (Kj ~u) ~w . ∆ } (Ki 6= Kj)

Rule UConVar Cases where the pattern vector starts with constructor Ki and
the value vector with variable x are handled by Rule UConVar:

U ((Ki ~p) ~q) (Γ ` x ~u . ∆) =
⋃

Kj U ((Ki ~p) ~q) (Γ′ ` (Kj ~y) ~u . ∆′)
where ~y#Γ ~a#Γ (x : τx) ∈ Γ Kj :: ∀~a. Q⇒ ~τ → τ

Γ′ = Γ,~a, ~y : ~τ ∆′ = ∆ ∪Q ∪ τ ∼ τx ∪ x ≈ Kj ~y

Rule UConVar takes the union of the uncovered sets for all refinements of the
variable x to a constructor Kj ; each can lead recursively through Rule UConCon
to uncovered cases. To inform guards, we record the equality x ≈ Kj ~y for each
constructor. As in Rule CConVar, we also record a type constraint between
the constructor return type and the type of x in Γ.

Notice that Rule CConVar could handle this case similarly and recurse using
all refinements of x. Yet, all refinements but one (the Ki) would fail matching
using Rule CConCon in the next step. Thus, we opted for a simpler and more
performant generation of the covered set.

Rule UVar Cases where the pattern vector starts with a variable are handled
by Rule UVar. Since variable x can match against any possible term, the clause
has identical structure to Rule CVar (modulo the recursive call to U):

U (x ~p) (Γ ` u ~u . ∆) = map (ucon u) (U ~p (Γ, x : τ ` ~u . ∆ ∪ x ≈ u))
where x#Γ Γ È u : τ

PHASE 2: PATTERN MATCH CHECKING 45

Rule UGuard Last, Rule UGuard deals with guards, and has identical
structure to the corresponding clause of C (Rule CGuard):

U ((p← e) ~p) (Γ ` ~u . ∆) = map tail (U (p ~p) (Γ, y : τ ` y ~u . ∆ ∪ y ≈ e))
where y#Γ Γ È e : τ

Computing the Divergent Set

The function D ~p v returns those vectors that diverge when matching the
pattern vector ~p. Following the structure of functions C and U , function D has
six clauses.

Rule DNil Firstly, the empty value vector does not diverge:

D ε (Γ ` ε . ∆) = ∅

Rule DConCon In the case of constructors in the head of the pattern vector
as well as the value vector (Rule DConCon) there is no divergence either: we
either recurse when the constructors match

D ((Ki ~p) ~q) (Γ ` (Ki ~u) ~w . ∆) = map (kcon Ki) (D (~p ~q) (Γ ` ~u ~w . ∆)

or else return the empty divergent set:

D ((Ki ~p) ~q) (Γ ` (Kj ~u) ~w . ∆) = ∅ (Ki 6= Kj)

Rule DConVar When the clause starts with constructor Ki, and the vector
with a variable x, Rule DConVar combines two different results: (a) the first
result represents symbolically all vectors where x diverges; (b) the second result
recurses by refining x to Ki ~y.

D ((Ki ~p) ~q) (Γ ` x ~u . ∆) = { Γ ` x ~u . ∆ ∪ (x ≈ ⊥)}
∪ D ((Ki ~p) ~q) (Γ′ ` (Ki ~y) ~u . ∆′)

where ~y#Γ ~a#Γ (x : τx) ∈ Γ Ki :: ∀~a. Q⇒ ~τ → τ
Γ′ = Γ,~a, ~y : ~τ ∆′ = ∆ ∪Q ∪ τ ∼ τx ∪ x ≈ Ki ~y

In the first case we record the divergence of x with a strictness constraint (x ≈ ⊥).
For the second case, we appeal recursively to the divergent set computation (We
give more details on the ∆′ that we use to recurse in Sections 3.3.3 and 3.3.4).

In fact, this is the only clause of D which extends the divergent set: a constructor
pattern is more refined than a variable (according to Definition 1, p 6� x), and
thus forces evaluation.

46 PATTERN MATCH CHECKING

Rule DVar The case for variables (Rule DVar) is similar to the corresponding
rules for C and U :
D (x ~p) (Γ ` u ~u . ∆) = map (ucon u) (D ~p (Γ, x : τ ` ~u . ∆ ∪ x ≈ u))

where x#Γ Γ È u : τ

Rule DGuard Finally, Rule DGuard deals with guards and is again similar
to CGuard and UGuard:
D ((p← e) ~p) (Γ ` ~u . ∆) = map tail (D (p ~p) (Γ, y : τ ` y ~u . ∆ ∪ y ≈ e))

where y#Γ Γ È e : τ

Filtering the Results with Constraints

Function patVecProc prunes the results of C ~p v, U ~p v, and D ~p v that are
semantically empty by appealing to an oracle judgment `Sat (Γ ` ~u . ∆). In the
next section we define “semantically empty” by giving a denotational semantics
to a value vector abstraction JvK as a set of concrete value vectors.

The purpose of `Sat is to determine whether this set is empty. However, because
satisfiability is undecidable in general (particularly when constraints involve
term equivalence), we have to be content with a decidable algorithm `Sat that
gives sound but incomplete approximation to satisfiability:

6`Sat v ⇒ JvK = ∅
In terms of the outcomes (1-3) in Section 3.1.1, “soundness” means

1. If we do not warn that a set of clauses may be non-exhaustive, then they
are definitely exhaustive.

2. If we warn that a clause is redundant, then it definitely is redundant.

3. If we warn that a right-hand side of a non-redundant clause is inaccessible,
then it definitely is inaccessible.

Since `Sat is necessarily incomplete, the converse does not hold in general.
There is, of course, a large design space of less-than-complete implementations
for `Sat. Our implementation is explained in detail in Chapter 4.

Another helpful insight is this: during constraint generation (in functions C, U ,
and D) the sole purpose of adding constraints to ∆ is to increase the chance
that `Sat will report “unsatisfiable”. It is always sound to omit constraints
from ∆ so an implementation is free to trade off accuracy against the size of
the constraint set.

PHASE 2: PATTERN MATCH CHECKING 47

3.3.3 Type Constraints from GADTs

Rules CConVar, UConVar, and DConVar record type equalities of the form
τ ∼ τx between the value abstraction type (τx) and the return type of the
appropriate data constructor each time (τ).

Recording these constraints in Rules CConVar and UConVar is important for
reporting precise warnings when dealing with GADTs, as the following example
demonstrates:

data T a where
TList :: T [a]
TBool :: T Bool

foo :: T c→ T c→ Int
foo TList _ = . . .
foo _ TList = . . .

To determine C2, the covered set from the second equation, we start from an
initial singleton vector abstraction U0 = {Γ0 ` x1 x2 . ε} with Γ = c, x1 :
T c, x2 : T c. Next compute the uncovered set from the first clause, which (via
UConVar and UVar) is U1 = {Γ1 ` TBool x2 . ∆1}, where

Γ1 = Γ0, a
∆1 = (x1 ≈ TBool) ∪ (T c ∼ T Bool)

Note the recorded type constraint for the uncovered constructor TBool from
Rule UConVar. Next, from U1, compute the covered set for the second
equation (via Rules CVar and CConVar):

C2 = C (_ TList) (Γ1 ` TBool x2 . ∆1)
= {Γ1, b ` TBool TList . ∆1 ∪ (x2 ≈ TList) ∪ (T c ∼ T [b])}

Note the type constraint (T c ∼ T [b]) generated by rule CConVar. It allows us
to rewrite constraint (T c ∼ T Bool) to (T [b] ∼ T Bool). The final constraint is
unsatisfiable, C2 is semantically empty, and the second equation is unreachable.
Unless Rule CConVar or UConVar both record the type constraints we would
miss reporting the second branch as redundant.

Rule DConVar also records term and type-level constraints in the recursive
call. Indeed, if the first case in that rule is deemed unsatisfiable by our oracle it
is important to have a precise set of constraints for the recursive call to detect
possible semantic emptiness of the result.

3.3.4 Term Constraints from Guards

A major feature of our approach is that it scales nicely to handle guards, and
other syntactic extensions of pattern-matching supported by GHC. Since to our

48 PATTERN MATCH CHECKING

knowledge there exists no other checking algorithm which handles guards, it
might be illuminating to see how the rules work in practice. Consider again
function abs1 from Section 2.4.2. We may compute (laboriously) as follows:

U0 = {v : Int ` v . ε}
U1 = U (x (True ← x < 0)) (v : Int ` v . ε)

= (apply UVar)
map (ucon v) (U (True ← v < 0) (v : Int ` ε . x ≈ v))

= (apply UGuard)
map (ucon v) (map tail

(U (True) (v : Int, y : Bool ` y . x ≈ v, y ≈ v < 0))
= (apply UConVar; the True/True case yields ∅)

map (ucon v) (map tail (map (ucon y)
(U True (v : Int, y : Bool ` False . x ≈ v, y ≈ v < 0, y ≈ False))

= (apply UConCon with Ki 6= Kj , and do the maps)
{v : Int, y : Bool ` v . x ≈ v, y ≈ v < 0, y ≈ False}

This correctly characterizes the uncovered values as those v : Int for which
v < 0 is False.

3.3.5 Extension 1: Smarter Initialization

Until now, we always initialized U0 with the empty constraint, ∆ = ε. But,
consider these definitions:

type family F a data T a where
type instance F Int = Bool TInt :: T Int

TBool :: T Bool

Datatype T is a familiar GADT definition. F is a type family, or type-level
function (Chakravarty et al., 2005a; Schrijvers et al., 2008),5 equipped with
an instance that declares F Int = Bool. Given these definitions, is the second
clause of f below redundant?

f :: F a ∼ b⇒ T a→ T b→ Int
f TInt TBool = . . .
f TInt x = . . .
f TBool y = . . .

Function f matches the first argument with TInt, yielding the local type equality
a ∼ Int. Using this fact, together with the signature constraint F a ∼ b and the
top-level equation F Int = Bool, we can deduce that Bool ∼ b, and hence the

5We elaborate more on type families in the second part of this thesis (Part II).

PHASE 2: PATTERN MATCH CHECKING 49

second clause is in fact redundant. In this reasoning we had to use the quantified
constraint F a ∼ b from the signature of f . Hence the initial value abstraction
U0 for this pattern match should include constraints from the function signature:

U0 = {a, b, (x1 : T a), (x2 : T b) ` x1 x2 . F a ∼ b}

3.3.6 Extension 2: Nested Pattern Matches

Consider this definition:

f [] = . . .
f x = . . . (case x of { w : ws → e }) . . .

The clauses of f and those of the inner case expression are disconnected. And
yet we can see that the inner case expression is exhaustive, because the x = []
case is handled by the first equation.

Happily there is a principled way to allow the inner case to take advantage of
knowledge from the outer one: gather the constraints from the covered set of
the outer pattern match, propagate them inwards, and use them to initialize U0
for the inner one. In this example, we may follow the algorithm as follows:

U f
0 = {a, v : [a] ` v . ∅}

U f
1 = {a, v : [a], v1 : a, v2 : [a] ` (v1 : v2) . ∅}

C f
2 = {a, v : [a], v1 : a, v2 : [a], x : [a] ` (v1 : v2) . x ≈ v1 : v2}

Propagate C f
2 inwards to the case expression. Now initialize the U case

0 for the
case expression thus:

U case
0 = {(Γ ` x . ∆) | (Γ ` ~u . ∆) ∈ C f

2 }

It can be seen that the ∆ used for the inner case will include the constraint
x = v1 : v2 inherited from C f

2 , and that in turn can be used by `Sat to show
that the [] missing branch of the case is inaccessible. Notice that U0 may now
have more than one element; until now it has always been a singleton.

The same idea works for type equalities, so that type-equality knowledge gained
in an outer pattern-match can be carried inwards in ∆ and used to inform inner
pattern matches.

50 PATTERN MATCH CHECKING

Figure 3.6 Values and Value Typing

τc ::= T τ c | τc → τc closed monotype
V,W ::= K ~V | λx. e | ⊥ value

V̀ V : τc Well-typed Values

V̀ ⊥ : τc
Bot

x : τc1 È e : τc2

V̀ λx. e : τc1 → τc2

Fun

K :: ∀a. ∀b. Q⇒ τ → T a

|= θ(Q) θ = [τ ci/a, τ cj/b] V̀ Vi : θ(τi) (∀i)
V̀ K ~V : T ~τci

Con

3.4 Meta-theory

In order to formally relate the algorithm to the dynamic semantics of pattern
matching, we first formalize the latter as well as the semantics of the value
abstractions used by the former.

3.4.1 Values and Typing

As outlined in Section 3.3.1 a value abstraction denotes a set of values. Hence,
before we give the denotation of value abstractions, we briefly discuss the syntax
and typing of values, which is given in Figure 3.6. The syntax of values V
comprises constructor values (K ~V), λ-expressions (λx. e) and—since we are
targeting call-by-name semantics—bottom values (⊥). Relation V̀ V : τc assigns
to a value V a closed monotype τc and is entirely standard.6

3.4.2 Value Abstractions

The denotation of value abstractions as a set of values is formalized in Figure 3.7.

As the figure shows, the meaning of a closed value abstraction Γ ` ~u . ∆ is
the set of all type-respecting instantiations of ~u to a vector of (closed) values

6Rule Fun also makes an appeal to the term typing relation Γ È e : τ . The definition of
the term typing relation is out of the scope of this chapter and hence omitted.

META-THEORY 51

Figure 3.7 Semantics of Value Abstractions and Patterns

S ,C ,U ,D ::= ~V set of value vectors

JSK = ~V Denotation of Value Abstractions

JSK = {θ(~u) | (Γ ` ~u . ∆) ∈ S, θ ∈ JΓK, |= θ(∆)}

JΓK = θ Denotation of Typing Environments

JεK = {ε}
Jx : τc,ΓK = {θ · [V/x] | V̀ V : τc, θ ∈ JΓK}
Ja,ΓK = {θ · [τc/a] | θ ∈ J[τc/a](Γ)K}

J~pKθ :: ~V →M Denotation of Pattern Vectors (Auxiliary)

JεKθ(ε) = T
Jx ~pKθ(V ~V) = J~pK[V/x]·θ(~V)
J(p← e) ~pKθ(~V) = Jp ~pKθ(EJθ(e)K ~V)

J(Ki ~p) ~qKθ((Kj
~V) ~W) =

{
J~p ~qKθ(~V ~W) , if Ki = Kj

F , if Ki 6= Kj

J(Ki ~p) ~qKθ(⊥ ~V) = ⊥

J~pK :: ~V → 〈~V c, ~V u, ~V ⊥〉〉 Denotation of Pattern Vectors

J~pK(S) = 〈{~V | ~V ∈ S where J~pKε(~V) = T }
, {~V | ~V ∈ S where J~pKε(~V) = F}
, {~V | ~V ∈ S where J~pKε(~V) = ⊥}〉

~V = θ(~u), such that the constraints θ(∆) are satisfied. The judgment |= ∆
denotes the logical entailment of the (closed) constraints ∆; we omit the details
of its definition for the sake of brevity.

A “type-respecting instantiation”, or denotation, of a type environment Γ is
a substitution θ whose domain is that of Γ; it maps each type variable a ∈ Γ
to a closed type; and each term variable x : τ ∈ Γ to a closed value V of the

52 PATTERN MATCH CHECKING

appropriate type `v V : τ . For example

J{ a, b, x : a, y : b ` x y . a ∼ Bool, b ∼ () }K
= { True () , False () , ⊥ () ,

True ⊥ , False ⊥ , ⊥ ⊥ }

3.4.3 Pattern Vectors

Figure 3.7 also formalizes the dynamic semantics of pattern vectors.

The basic meaning J~pKθ of a pattern vector ~p is a function that takes a vector
of values ~V to a matching result M . There may be free variables in (the guards
of) ~p; the given substitution θ binds them to values. The matching result M
has the form T , F or ⊥ depending on whether the match succeeds, fails or
diverges:7

M ::= T | F | ⊥ matching result

Consider matching the pattern vector x (True ← x > y), where y is bound to
5, against the value 7; this match succeeds. Formally, this is expressed thus:

Jx (True ← x > y)K[5/y](7) = T

For comparing with our algorithm, this formulation of the dynamic semantics
is not ideal: the former acts on whole sets of value vectors (in the form of value
abstractions) at a time, while the latter considers only one value vector at a
time. To bridge this gap, J~pK lifts J~pKε from an individual value vector ~V to a
whole set S of value vectors. It does so by partitioning the set based on the
matching outcome, which is similar to the behavior of our algorithm.

3.4.4 Correctness Theorem

Now we are ready to express the correctness of the algorithm with respect to
the dynamic semantics. The algorithm is essentially an abstract interpretation
of the dynamic semantics. Rather than acting on an infinite set of values, it
acts on a finite representation of that set, the value abstractions. Correctness
amounts to showing that the algorithm treats the abstract set in a manner
that faithfully reflects the way the dynamic semantics treats the corresponding
concrete set. In other words, it should not matter whether we run the algorithm
on an abstract set S and interpret the abstract result 〈C ,U ,D〉 as sets of

7We omit the denotation of expressions EJeK = V , which depends on the selection of e.

META-THEORY 53

concrete values 〈C ,U ,D〉, or whether we first interpret the abstract set S as
a set S of concrete values and then run the concrete dynamic semantics on
those.

This can be expressed concisely as a commuting diagram:

S

J·K
��

patVecProc(~p)
// 〈C,U,D〉

J·K
��

S
J~pK

// 〈C ,U ,D〉

This diagram allows us to interpret the results of the algorithm. For instance, if
we choose s to cover all possible value vectors and we observe that C is empty,
we can conclude that no value vector successfully matches ~p.

To state correctness precisely we have to add the obvious formal fine print about
types: the behavior of pattern matching is only defined if:

1. the pattern vector ~p is well-typed,

2. the value vector ~V and, by extension, the value set S and the abstract
value set S are well-typed, and

3. the types of pattern vector ~p and value vector ~V correspond.

The first condition we express concisely with the judgment Q; Γ ` ~p : ~τ , which
expresses that the pattern vector ~p has types ~τ for a type environment Γ and
given type constraints Q.

For the second condition, we first consider the set of all values value vectors
compatible with types ~τ , type environment Γ and given type constraints Q. This
set can be compactly written as the interpretation JS∗K of the value abstraction
S∗ = {Γ, ~x : ~τ ` ~x . Q}. Any other well-typed value vectors ~V must be
contained in this set: ~V ∈ JS∗K. Similarly, S ⊆ JS∗K and JSK ⊆ JS∗K.

Finally, the third condition is implicitly satisfied by using the same types ~τ ,
type environment Γ and given type constraints Q.

Wrapping up, we formally state the correctness theorem as follows:

54 PATTERN MATCH CHECKING

Theorem 1 (Correctness).

∀Γ, Q, ~p, ~τ , S :
Q; Γ ` ~p : ~τ ∧ JSK ⊆ J{Γ, ~x : ~τ ` ~x . Q}K =⇒ JpatVecProc(~p, S)K = J~pKJSK

The proof of Theorem 1 is future work.

3.4.5 Complexity

Every pattern-checking algorithm has terrible worst-case complexity, and ours
is no exception. For example, consider

data T = A | B | C
f A A = True
f B B = True
f C C = True

What values U3 are not covered by f? Answer

{A B,A C,B A,B C,C A,C B}

The size of the uncovered set is the square of the number of constructors in T .
It gets worse: Sekar et al. (1995) show that the problem of finding redundant
clauses is NP-complete, by encoding the boolean satisfiability (SAT) problem
into it. So the worst-case running time is necessarily exponential. But so is
Hindley-Milner type inference! As with type inference, we hope that worst
case behavior is rare in practice. Moreover, GHC’s current redundancy checker
suffers from the same problem without obvious problems in practice. We have
gathered quantitative data about set sizes to better characterize the problem,
which we discuss in the next chapter (Section 4.5.1).

3.5 Related Work

3.5.1 Compiling Pattern Matching

There is a large body of work concerned with the efficient compilation of pattern
matching, for strict and lazy languages (Laville, 1991; Maranget, 1992; Maranget
and Para, 1994; Maranget, 2008). Although superficially related, these works
focus on an entirely different problem, one that simply does not arise for us.

RELATED WORK 55

Consider
f True True = 1
f _ False = 2
f False True = 3

In a strict language one can choose whether to begin by matching the first
argument or the second; the choice affects only efficiency, not semantics. In
a lazy language the choice affects semantics; for example, does (f ⊥, False)
diverge, or return 2? Laville and Maranget suggest choosing a match order that
makes f maximally defined (Maranget, 1992), and they explore the ramifications
of this choice.

However, Haskell does not offer this degree of freedom; it fixes a top-to-bottom
and left-to-right order of evaluation in pattern match clauses.

3.5.2 Warnings for Simple Patterns

We now turn our attention to generating warnings for inexhaustive or redundant
patterns. For simple patterns (no guards, no GADTs) there are several related
works. The most closely-related is Maranget’s elegant algorithm for detecting
missing and redundant (or “useless”) clauses (Maranget, 2007).8 Maranget
recursively defines a predicate that determines whether there could be any vector
of values v that matches pattern vector ~p, without matching any pattern vector
row in a matrix P , Ureq(P ~p), and answers both questions of exhaustiveness
(query Ureq(P _)) and redundancy (query Ureq(P 1..(j−1) ~pj) where P 1..(j−1)

corresponds to all previous clauses). Our algorithm has many similarities
(e.g. in the way it expands constructor patterns) but is more incremental by
propagating state from one clause to the next instead of examining all previous
clauses for each clause.

Maranget’s algorithm does not deal with type constraints (as those arising from
GADTs), nor guards and nested patterns that require keeping track of ∆ and
environment Γ. Finally the subtle case of an empty covered set but a non-empty
divergent set would not be treated specially (and the clause would be considered
as non-redundant, though it could only allow values causing divergence).

Krishnaswami (2009) accounts for exhaustiveness and redundancy checking as
part of a formalization of pattern matching in terms of the focused sequent
calculus. His approach assumes a left-to-right ordering in the translation of ML
patterns, which is compatible with Haskell’s semantics.

8See also the discussion of Section 2.2.2.

56 PATTERN MATCH CHECKING

Sestoft (1996) focuses on compiling pattern matches for a simply-typed variant
of ML, but his algorithm also identifies inexhaustive matches and redundant
match rules as a by-product.

3.5.3 Warnings for GADT Patterns

OCaml and Idris both support GADTs, and both provide some GADT-aware
support for pattern-match checking. No published work describes the algorithm
used in these implementations.

OCaml When Garrigue and Normand (2011) introduced GADTs to the OCaml
language, they also extended the checking algorithm. It eliminated the ill-typed
uncovered cases proposed by OCaml’s original algorithm. However, their
approach did not identify clauses that were redundant due to unsatisfiable type
constraints. For instance, the third clause in f below was not identified as
redundant.

type _ t = T1 : int t | T2 : bool t

let f (type a) (x: a t) (y: a s) : unit =
match (x, y) with
| (T1, T1) -> ()
| (T2, T2) -> ()
| (_, _) -> ()

Furthermore, this approach did not perform a redundancy check, which led to
a discrepancy between the issued missing/redundant clauses.

In recent work (Garrigue and Normand, 2015) they presented an improved
algorithm which gives much better results in matches involving GADTs. The
two main contributions of this work are (a) the observation that pattern match
checking for strict languages is equivalent to type inhabitation checking (and
thus undecidable), and (b) the development of a coverage checking algorithm
which uses backtracking to turn type inference into a proof search. Indeed,
as we discuss in Section 4.2, we can reuse these findings to perform coverage
checking of strict matches in Haskell too.

RELATED WORK 57

Idris Idris (Brady, 2013) has very limited checking of overlapping patterns
and redundant patterns.9 It does, however, check coverage, and will use this
information in optimization and code generation.

ML Variants Xi (2003, 1998a,b) shows how to eliminate dead code for GADT
pattern matching—and dependent pattern matching in general—for Dependent
ML. He has a two-step approach: first add all the missing patterns using simple-
pattern techniques (Section 3.5.2), and then prune out redundant clauses by
checking when typing constraints are un-satisfiable. We combine the two steps,
but the satisfiability checking is similar.

Dunfield’s thesis (Dunfield, 2007b, Chapter 4) presents a coverage checker for
Stardust (Dunfield, 2007a), another ML variant with refinement and intersection
types. The checker proceeds in a top-down, left-to-right fashion much like
Figure 3.1 and uses type satisfiability to prune redundant cases.

Neither of these works handles guards or laziness.

3.5.4 Constraint-based Exhaustiveness Checking

The idea of constraint-solving-based exhaustiveness checking employed by our
algorithm can also be found in other works, some of which we discuss below.

Dialyzer Sagonas et al. (2013) extend Dialyzer’s10 analysis that infers success
typings to provide more precise error detection for Erlang, by means of program
slicing. Their 3-phase technique (a) generates subtyping constraints from the
source program, (b) employs a constraint solver to detect inconsistencies in the
generated constraints, and (c) post-processes inconsistencies found in phase (b)
to refine the source of the inconsistencies and accurately pinpoint the source
of run-time errors. Though the shape of constraints we generate is different
(equality vs. subtyping constraints) and Sagonas et al. deal with a dynamically-
typed language (Erlang), both works can detect non-exhaustive matches in their
respective settings, by means of a generate-and-solve approach.

Since Erlang has strict semantics and a dynamic type system, Dialyzer does
not deal with GADTs or laziness but can reason about boolean guards found in
Erlang.

9Edwin Brady, personal communication.
10Dialyzer is the most advanced static analysis tool developed for Erlang. For more details

on Dialyzer’s internals see the work of Lindahl and Sagonas (2004).

58 PATTERN MATCH CHECKING

Exception Analysis for Call-by-name Languages Koot and Hage (2015)
develop a modular constraint-based exception analysis which gives accurate
warnings about run-time errors due to non-exhaustive matches in call-by-
name languages. Their analysis employs both data-flow analysis (by means
of subtyping constraints) and control-flow analysis (by means of conditional
constraints). Furthermore, it uses parametric polyvariance to achieve context-
sensitivity and polyvariant recursion to avoid poisoning.

Though very similar to the work of Sagonas et al. (2013), this work targets
a call-by-name semantics, which makes it more closely related to the work of
our own. Nevertheless, Koot and Hage (2015) do not handle GADTs, pattern
guards, or any other guard-like feature as we do (they deal with if clauses
though).

3.5.5 Total Languages

Total languages like Agda (Norell, 2007) and Coq (The Coq development team,
2004) must treat non-exhaustive pattern matches as an error (not a warning).
Moreover, they also allow overlapping patterns and use a variation of Coquand’s
dependent pattern matching (Coquand, 1992) to report redundant clauses. The
algorithm works by splitting the context, until the current neighborhood matches
one of the original clauses. If the current neighborhood fails to match all the
given clauses, the pattern match is non-exhaustive and a coverage failure error is
issued. If matching is inconclusive though, the algorithm splits along one of the
blocking variables and proceeds recursively with the resulting neighborhoods.
Finally, the with-construct (Norell, 2007), first introduced by McBride and
McKinna (2004), provides (pattern) guards in a form that is suitable for total
languages.

The key differences between our work and work on dependent pattern matching
are the following: (i) because of the possibility of divergence we have to take
laziness into account; (ii) current presentations of with-clauses (McBride and
McKinna, 2004) do not introduce term-level equality propositions and hence may
report inexhaustiveness checking more often than necessary, (iii) our approach
is easily amenable to external decision procedures that are proven sound but do
not have to return proof witnesses in the proof theory at hand.

3.5.6 Verification Tools

ESC/Haskell A completely different but more powerful approach can be found
in ESC/Haskell (Xu, 2006) and its successor (Xu et al., 2009). ESC/Haskell is

RELATED WORK 59

based on preconditions and contracts, so, it is able to detect far more defects
in programs: pattern matching failures, division by zero, out of bounds array
indexing, etc. Although it is far more expressive than our approach (e.g., it
can verify even some sorting algorithms), it requires additional work by the
programmer through explicit pre/post-conditions.

Catch Another approach that is closer to our work but retains some of the
expressiveness of ESC/Haskell is the Catch tool (Mitchell and Runciman, 2008)
Catch generates pre- and post-conditions that describe the sets of incoming
and returned values of functions (quite similarly to our value abstraction sets).
Catch is based on abstract interpretation over Haskell terms—the scope of
abstract interpretation in our case is restricted to clauses (and potentially nested
patterns). A difference is that Catch operates at the level of Haskell Core, GHC’s
intermediate language (Yorgey et al., 2012). The greatest advantage of this
approach is that this language has only 10 data constructors, and hence Catch
does not have to handle the more verbose source Haskell AST. Unfortunately, at
the level of Core, the original syntax is lost, leading to less comprehensive error
messages. On top of that, Catch does not take into account type constraints,
such as those that arise from GADT pattern matching. Our approach takes
them into account and reuses the existing constraint solver infrastructure to
discharge them.

Liquid Types Liquid types (Rondon et al., 2008; Vazou et al., 2014) is a
refinement types extension to Haskell. Similarly to ESC/Haskell, it can be
used to detect redundant, overlapping, or non-exhaustive patterns, using an
SMT-based version of Coquand’s algorithm (Coquand, 1992). To take type-level
constraints (such as type equalities from GADTs) into account, one would have
to encode them as refinement predicates. The algorithm that we propose for
computing covered, uncovered, and diverging sets would still be applicable, but
would have to emit constraints in the vocabulary of Liquid types.

3.5.7 Algorithm Extensions

After the publication of our algorithm (Karachalias et al., 2015), we identified
two developments that have been inspired by our work.

Z3 SMT Solver As we discussed in Section 3.1.3, one of the main benefits of
our approach is the modular solving of constraints: one can use different oracles
without affecting the implementation of the main algorithm at all.

60 PATTERN MATCH CHECKING

Pavel Kalvoda and Tom Sydney Kerckhove recently implemented a proof-of-
concept implementation of our algorithm in the form of a tool, which uses the
Z3 SMT solver (developed by Microsoft Research) as a term oracle, for accurate
warnings in the presence of guards. The source-code of the tool can be found in
the following link:

https://github.com/PJK/haskell-pattern-matching

LambdaCube 3D Furthermore, the compiler of LambdaCube 3D (a Haskell-
like purely functional domain specific language for GPU programming) uses a
pattern match compiler and checker inspired by the algorithm of Section 3.3.2.11

The key idea is to represent complex pattern matching structures as guard trees,
following a syntax similar to that of Section 3.2.1. We believe that such an
extension offers opportunities for new pattern matching features, like or-patterns.
Indeed, we have independently investigated a similar extension: pattern trees.
We elaborate more on this topic in Section 10.3.1, which discusses ongoing and
future work.

The aforementioned algorithm is already implemented in the LambdaCube 3D
compiler, which can be found here:

https://github.com/lambdacube3d/lambdacube-compiler

and an example-driven presentation of the algorithm can be found here:12

https://goo.gl/xV22mS

3.6 Scientific Output

This chapter has presented (a) a small—yet highly expressive—core pattern
language in which we can encode a multitude of source-level features from
the literature, and (b) a type-aware pattern match checking algorithm which
processes programs written in this language and emits accurate warnings for
missing or redundant patterns.

The main novelty of our approach lies in the use of abstract interpretation
to capture sets of values, and the separation of concerns: the algorithm is

11Péter Diviánszky, personal communication.
12As presented by Péter Diviánszky (one of LambdaCube 3D lead developers) at the

Budapest Haskell User Group meetup on April 7, 2016.

https://github.com/PJK/haskell-pattern-matching
https://github.com/lambdacube3d/lambdacube-compiler
https://goo.gl/xV22mS

SCIENTIFIC OUTPUT 61

parameterized over an oracle that can solve type and term constraints. This
allows the algorithm to focus on the structural aspects of pattern matching,
while the oracle deals with constraints that arise from guards or GADTs. Thus,
accommodation of type system extensions or better precision of the reported
warnings can be achieved without affecting the main algorithm at all. Finally, we
formalize the correctness of our algorithm with respect to the Haskell semantics
of pattern matching.

Most of the material found in this chapter is drawn from the following
publication:

Georgios Karachalias, Tom Schrijvers, Dimitrios Vytiniotis and Simon
Peyton Jones (2015). GADTs Meet Their Match: Pattern-matching
Warnings That Account for GADTs, Guards, and Laziness. In
Proceedings of the 20th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’15, pp. 424-436, Vancouver, BC,
Canada, August 31-September 2, 2015.

Within this multi-author work, the contribution of each author has been the
following: The first version of the pattern match checking algorithm dealt only
with laziness and GADTs, and was developed by the author of this thesis. This
version was later collaboratively extended by all authors with the core pattern
language, so that it could accommodate guards and guard-like features. The
implementation in GHC has been developed by the author of this thesis, with
the support of other GHC developers (in particular Ben Gamari).

Chapter 4

GHC Implementation

“If debugging is the process of removing software bugs, then
programming must be the process of putting them in.”

—Edsger Dijkstra

In order to evaluate our pattern match checking algorithm, we have implemented
it in the cutting-edge Haskell compiler, GHC. In this chapter we elaborate on
the instantiation of the theoretical model of Chapter 3 so that it can use the
existing GHC infrastructure. Furthermore, we evaluate our implementation’s
performance, precision, and impact on several Hackage libraries. Given that
GHC is actively being developed by several community members from academia
and industry, the results we present here reflect the implementation of the
pattern match checker at an earlier time. More specifically, the material found
in this chapter reflects the implementation of our initial prototype (as described
in the corresponding publication (Karachalias et al., 2015)), and the subsequent
development until February 2017. GHC has evolved significantly since our
initial implementation so it is very challenging to evaluate our implementation
in isolation of the current compiler state.

The remainder of this chapter discusses several aspects of the implementation
of our algorithm in GHC and is structured as follows: Section 4.1 presents
a more concise and efficient formalization of the algorithm we presented
in Section 3.3, which constitutes the starting point of our implementation.
Section 4.2 discusses how our implementation deals with an extension we
have not considered in the design of our algorithm: empty case expressions.
Section 4.3 elaborates on several optimizations we have implemented to achieve

63

64 GHC IMPLEMENTATION

competitive performance. Section 4.4 discusses the instantiation of the oracle
`Sat. Section 4.5 demonstrates the effectiveness and evaluates the performance
of the new checker on a set of actual Haskell programs submitted by GHC users,
for whom inaccurate warnings were troublesome. Finally, concluding Section 4.6
summarizes our results.

4.1 Alternative Formalization

We have optimized the presentation of our algorithm in Sections 3.2 and 3.3 for
clarity, rather than runtime performance. Even though we cannot improve upon
the asymptotic worst-case time complexity, various measures can significantly
improve the average performance of the algorithm. Additionally, we made
several simplifications for the sake of readability. Of course, our implementation
needs to handle all special cases that have not been covered in Sections 3.2
and 3.3. To this end, before discussing the optimizations of the algorithm we
have implemented in GHC, in this section we present an alternative formalization
of the main algorithm (i.e., functions C, U , and D) which is more suitable for
a performant implementation. The optimizations are discussed at length in
Section 4.3.

4.1.1 Clause Processing

First, we utilize the observation that functions C, U , and D of Section 3.3.2
have a very similar structure to merge them into a single function to avoid
multiple traversals: Match(~p, v) ⇓ R. By R we denote the result of pattern
match checking: R is simply a triple containing the covered, uncovered, and
divergent sets:

R ::= 〈C ,U ,D〉 pattern match checking result

The definition of judgment Match(~p, v) ⇓ R is given in Figure 4.1. Each
rule combines the three corresponding rules of functions C, U , and D.
Rules ConEq and ConNe taken together capture Rules CConCon, UConCon,
and DConCon: Rule ConEq handles cases where the data constructors are
equal, while Rules ConNe cases where they differ.

The definition of auxiliary function mapR is straightforward:

mapR f 〈C ,U ,D〉 = 〈map f C ,map f U ,map f D〉

The only noticeable difference between the definition of Match(~p, v) ⇓ R and
functions C, U , and D is captured in Rule ConVar.

ALTERNATIVE FORMALIZATION 65

Figure 4.1 Pattern Match Checking (All-In-One)

Match(~p, v) ⇓ R

Match(ε, Γ ` ε . ∆) ⇓ 〈{Γ ` ε . ∆},∅,∅〉
Nil

Match(~p ~q, Γ ` ~u ~w . ∆) ⇓ R
Match((Ki ~p) ~q, Γ ` (Ki ~u) ~w . ∆) ⇓ (mapR (kcon Ki) R)

ConEq

Ki 6= Kj

Match((Ki ~p) ~q, Γ ` (Kj ~u) ~w . ∆) ⇓ 〈∅, {Γ ` (Kj ~u) ~w . ∆},∅〉
ConNe

x /∈ dom(Γ) Γ ` u : τ Match(~p, Γ, x : τ ` ~u . ∆ ∪ x ≈ u) ⇓ R
Match(x ~p, Γ ` u ~u . ∆) ⇓ (mapR (ucon u) R)

Var

y /∈ dom(Γ)
Γ ` e : τ Match(~p ~q, Γ, y : τ ` y ~u . ∆ ∪ y ≈ e) ⇓ R

Match((~p← e) ~q, Γ ` ~u . ∆) ⇓ (mapR tail R)
Guard

~y /∈ dom(Γ) ~a /∈ dom(Γ) Γ ` x : τx Kj :: ∀~a. Q⇒ ~τ → τ
Γ′ = Γ,~a, ~y : ~τ ∆′ = ∆ ∪Q ∪ (τ ∼ τx) ∪ (x ≈ Kj ~y)

Match((Ki ~p) ~q, Γ ` (Kj ~y) ~u . ∆′) ⇓ 〈Cj ,Uj ,Dj〉
C =

⋃
Cj U =

⋃
Uj D = (

⋃
D) ∪ {Γ ` x ~u . ∆ ∪ (x ≈ ⊥)}

Match((Ki ~p) ~q, Γ ` x ~u . ∆) ⇓ 〈C ,U ,D〉
ConVar

Rule CConVar specializes variable pattern x to Ki ~y while Rule ConVar
generates all refinements of x. As we discussed in Section 3.3.2, in the next
iteration all Kj where j 6= i will produce an empty covered set.

Though Section 3.3.2 stresses that Rule CConVar is more performant by
generating only the refinement that will match, we need all refinements for
computing the uncovered set; the benefits of merging the three functions
outweigh the performance gain of simplifying the covered set computation.

It is straightforward to prove that the two formalizations of the algorithm
behave identically:

Theorem 2 (Algorithm Equivalence). The following holds:

Match(~p, v) ⇓ 〈C ,U ,D〉 ⇐⇒ (C ~p v = C) ∧ (U ~p v = U) ∧ (D ~p v = D)

66 GHC IMPLEMENTATION

The simultaneous computation of the covered, uncovered, and divergent sets
has more benefits, as we illustrate below.

4.1.2 Guard Trees

As we briefly discussed in Section 3.2, the syntax specification allows only for a
guard vector per clause. Though this design choice does not affect expressivity,
it does have a negative impact on performance. For example, function abs2
from Section 2.4.2 would give rise to two target clauses:

x (True ← x < 0) → −x
y (True ← y ≥ 0) → y

This approach is problematic for mainly two reasons:

• First, we need to replicate the pattern vector of each clause as many
times as the number of guard vectors it is accompanied by. In turn, this
means that the algorithm needs to traverse more pattern vectors. Since
the algorithm has exponential worst-case behavior (see Section 3.4.5), the
linear increase of pattern vectors may result in a significant performance
penalty.

• The algorithm implicitly assumes that each pattern vector binds distinct
variables; duplication of a pattern vector requires another phase of α-
renaming of all variables the vector binds.

Thus, instead of replicating the pattern vector of each clause, we preserve the
tree-like structure of the source language: the left-hand-side of each clause may
be terminated either by no guards (ε), or a list of guard vectors (~p1, . . . , ~pn).

The algorithm of Figure 4.1 can readily support the updated syntax with
minimal changes. We only need to add one more rule to cover cases where the
pattern vector is followed by a list of guard vectors:

U0 = {Γ ` ε . ∆} Match(~pi, Ui−1) W 〈Ci,Ui,Di〉
C = C1 ∪ . . . ∪ Cn U = Un D = D1 ∪ . . . ∪Dn

Match((~p1, . . . , ~pn), Γ ` ε . ∆) ⇓ 〈C ,U ,D〉
GTree

Rule GTree essentially traverses the guard vectors in a depth-first fashion: the
set that remains uncovered by the first guard vector is passed as input to the
second, etc. The covered and divergent sets for the whole clause are simply the
union of the individual corresponding sets, and the uncovered set of the clause
is the final uncovered set Un.

ALTERNATIVE FORMALIZATION 67

Judgment Match(~p, S) W R generalizes judgment Match(~p, v) ⇓ R to operate
on a value set abstraction S instead of single value vector abstraction v:

i ∈ [1 . . . n] : Match(~p, vi) ⇓ 〈Ci,Ui,Di〉
C = C1 ∪ . . . ∪ Cn U = U1 ∪ . . . ∪Un D = D1 ∪ . . . ∪Dn

Match(~p, {v1, . . . , vn}) W 〈C ,U ,D〉
ValSetAbs

The alert reader will have noticed that the traversal pattern of Rule GTree
is the same as of the general algorithm we presented in Figure 3.1. Indeed, as
we discuss in Section 4.1.2 below, we can naturally generalize pattern matrices
to pattern trees and open up new possibilities for further pattern matching
extensions (and consequently pattern match checking).

4.1.3 Literal and Negative Literal Patterns

Finally, in order to achieve a competitive performance,1 we extend the pattern
language of Section 3.2.1 to include literal patterns l:

p, q ::= x | K ~p | G | l target pattern

Accordingly, we also extend the value abstractions presented in Section 3.3.1 to
accommodate literal patterns:

u,w ::= x | K ~u | l | x /∈ l value abstraction

Additionally, we make use of negative information (Sestoft, 1996), via syntactic
form x /∈ l. A value abstraction of the form x /∈ l captures all literals x (of the
appropriate type) that are not equal to any of the literals l.

These changes introduce eight more cases in the algorithm of Section 4.1.

Literal Cases The first five cases are concerned with literal patterns alone and
are presented in Figure 4.2.

Rules LitEq and LitNe behave similarly to Rules ConEq and ConNe: the
former handles cases where the literal value abstraction matches the literal
pattern and the latter cases where they differ.

Since value abstractions now involve negative literal information, we include
Rules NLitNotIn and NLitIn.

1Though the translation of Section 3.2.2 is semantically sound, the lack of literal patterns
induces a serious run-time overhead in pattern match checking involving literals. The
introduction of negative literal patterns partially addresses this issue; the other measures we
take are discussed in Section 4.3 below.

68 GHC IMPLEMENTATION

Figure 4.2 Pattern Match Checking (Literal Rules)

Match(~p, Γ ` ~u . ∆) ⇓ R
Match(l ~p, Γ ` l ~u . ∆) ⇓ mapR (ucon l) R

LitEq

l1 6= l2

Match(l1 ~p, Γ ` l2 ~u . ∆) ⇓ 〈∅, {Γ ` l2 ~u . ∆},∅〉
LitNe

l /∈ l U1 = { Γ ` (x /∈ (l, l)) ~u . ∆ }
Match(l ~p, Γ ` l ~u . (∆ ∪ x ≈ l)) ⇓ 〈C ,U ,D〉

Match(l ~p, Γ ` (x /∈ l) ~u . ∆) ⇓ 〈C , (U1 ∪U),D〉
NLitNotIn

l ∈ l
Match(l ~p, Γ ` (x /∈ l) ~u . ∆) ⇓ 〈∅, {Γ ` (x /∈ l) ~u . ∆},∅〉

NLitIn

U1 = {Γ ` (x /∈ {l}) ~u . ∆ } D1 = {Γ ` x ~u . (∆ ∪ x ≈ ⊥) }
Match(l ~p, Γ ` l ~u . ∆ ∪ x ≈ l) ⇓ 〈C ,U ,D〉

Match(l ~p, Γ ` x ~u . ∆) ⇓ 〈C , (U1 ∪U), (D1 ∪D)〉
LitVar

Rule NLitNotIn covers cases where the pattern literal l is not included in
the negative pattern (x /∈ l). Essentially, a value vector abstraction of the
form (Γ ` (x /∈ l) ~u . ∆) represents a (possibly infinite) set of value vector
abstractions:

Γ ` l1 ~u . (∆ ∪ x ≈ l1) (l1 /∈ l)
Γ ` l2 ~u . (∆ ∪ x ≈ l2) (l2 /∈ l)

. . .

Hence, there exists an li such that li = l. For that value vector abstraction
matching may succeed, but all remaining value vector abstractions remain
uncovered, which we capture in uncovered set U1. The recursive call
Match(l ~p, Γ ` l ~u . (∆, x ≈ l)) ⇓ 〈C ,U ,D〉 deals with the matching case.

Rule NLitIn handles cases where l ∈ l. Since pattern (x /∈ l) represents all
cases where x is not any of the literals in l, this is an obvious mismatch. Hence,
the covered and divergent sets are empty, and the input uncovered value vector
abstraction remains uncovered.

Notice that since a negative literal (x /∈ l) represents a (possibly infinite) set
of literals, it is in WHNF. Hence, neither Rule NLitNotIn nor Rule NLitIn
extends the divergent set.

EMPTY CASE EXPRESSIONS 69

Finally, Rule LitVar is equivalent to Rule ConVar, but for literal patterns:
uncovered set U1 captures all refinements that do not match literal pattern l,
and set D1 captures cases where evaluation diverges. The recursive call captures
the only refinement of x that can still match:

Match(l ~p, Γ ` l ~u . ∆ ∪ x ≈ l) ⇓ 〈C ,U ,D〉

Literal-Constructor Cases Additionally, we have three degenerate cases which
are concerned with matches that mix overloaded and non-overloaded syntax.
These cases handle examples like the one we discussed in Section 2.4.2 (adapted
from GHC bug report #322)

The key technique in these rules is to abstract over a literal pattern l using
a fresh term variable x (and record this in a term equality (x ≈ l), so that
the algorithm can proceed using Rule ConVar/VarCon in the next iteration.
Reasoning about equalities of the form (from l ∼ K e) is completely left to the
term-oracle.

The rules are straightforward so we omit them for brevity. The interested reader
can find them in the source code of GHC.2

Common Prefixes The introduction of negative literal patterns greatly
improves the performance of the algorithm in cases where patterns with common
prefixes are considered. Indeed, GHC bug report #11303 presents an example on
which the naive implementation of the algorithm exhibits exponential behavior.

In essence, if we desugar literal patterns into guards (as we originally presented
in Figure 3.3), then reasoning about literal patterns is entirely non-structural,
and thus handled by the (possibly expensive) term oracle. Instead, explicit
literal and negative literal patterns allow us to detect non-matching cases quickly,
and avoid generating covered, uncovered, and divergent sets with unsatisfiable
constraints.

4.2 Empty Case Expressions

A Haskell extension that we have not considered until now is that of empty
case expressions (enabled in GHC by pragma EmptyCase). Such cases are often
useful when dealing with GADTs.

2Cases ConLit, LitCon, and ConNLit, found in file
https://github.com/ghc/ghc/blob/master/compiler/deSugar/Check.hs.

https://ghc.haskell.org/trac/ghc/ticket/322
https://ghc.haskell.org/trac/ghc/ticket/11303
https://github.com/ghc/ghc/blob/master/compiler/deSugar/Check.hs

70 GHC IMPLEMENTATION

Empty Case Expressions For example, we can define finite sets Fin and safe
lookup function vlookup over length-indexed vectors Vec (see Section 2.3) as
follows:

data Fin :: Nat → ? where vlookup :: Fin n→ Vec n a→ a
FZ :: Fin (Succ n) vlookup FZ (VC x xs) = x
FS :: Fin n→ Fin (Succ n) vlookup (FS n) (VC x xs) = vlookup n xs

Obviously, in the presence of GADTs it is very common to have uninhabited
types: for example type (Fin Zero) is uninhabited (under call-by-value semantics;
under call-by-name all types are inhabited by ⊥). To explicitly mark such cases,
Agda for example introduces the absurd pattern (Norell, 2009). In Haskell, we
can achieve the same effect by means of empty case expressions. For example:

absurd :: Fin Zero → ()
absurd x = case x of {}

Under lazy semantics, function absurd is non-exhaustive: ⊥ inhabits type
(Fin Zero) so the function call (absurd ⊥) would crash due to non-exhaustiveness,
rather than due to evaluating the diverging argument. By design though, empty
case expressions in Haskell have strict semantics (lazy semantics would defeat
the purpose of introducing empty case expressions in the first place): one could
simply rewrite the above to the following:

absurd :: Fin Zero → ()
absurd x = seq x (case x of {})

(that is, evaluate the argument to WHNF and then match against no patterns).

Unhandled Empty Case Expressions Obviously, the algorithm of Section 3.3.2
does not take this into account: in case the set of clauses of a match is empty, the
original uncovered set is returned and the match is considered unconditionally
non-exhaustive. This behavior is captured in GHC’s bug report #10746.

This is not new, Maranget (2007) similarly assumes that all types are inhabited,
thus exhibiting the same behavior. Also, notice that the match in function
absurd is exhaustive, but the following is not:

silly :: Int → ()
silly x = case x of {}

This is due to type Int being inhabited: a call (silly 42) would crash at run-time
with a non-exhaustiveness error.

https://ghc.haskell.org/trac/ghc/ticket/10746

EMPTY CASE EXPRESSIONS 71

Solution: Inhabitation Checking What all the above point at is that coverage
checking for pattern matching with strict semantics is related to inhabitation
checking (whether a type is inhabited by terms or not). Indeed, as Garrigue and
Normand (2015) recently pointed out, the two are equivalent. Unfortunately,
inhabitation checking is undecidable (Urzyczyn, 1997), but we can at least deal
with the most common cases. This is the approach we took for GHC.

Challenges and Design Choices To summarize, an empty case (with strict
semantics) is exhaustive iff the type of the scrutinee is uninhabited. In order to
issue more informative warnings, instead of a simple yes/no, our implementation
also generates the matches that are considered missing. In order to generate
such matches, we need to address the following three challenges:

1. Type Family Redexes. First, type family applications may complicate in-
habitation checking, since they essentially introduce type-level expressions.
For example, type expression F Int is not necessarily inhabited: if there is
an instance of the form F Int ∼ Bool, we can normalize/reduce F Int to
Bool, to expose that it is in fact an inhabited closed algebraic data type.

2. Newtypes. The Haskell standard (Peyton Jones, 2003) introduces the
so-called newtypes. A newtype declaration introduces a new type, which
is isomorphic to an existing one. This allows the separation of the two in
the source language (e.g., Length vs. Width), while preserving an efficient
run-time representation for both (e.g., they can both be represented by
an Integer).
Newtypes complicate matters. Consider the following example:

data Foo1 = Foo1 Int y1 = case ⊥ of { Foo1 x→ 1 }
newtype Foo2 = Foo2 Int y2 = case ⊥ of { Foo2 x→ 2 }

y1 evaluates to ⊥, as we have illustrated in detail in Chapters 2 and 3.
The latter though, evaluates to 2: newtype constructor Foo2 does not
force any evaluation. This would be more obvious if we have (equivalently)
defined y2 as

y2 = case ⊥ of { x′ → 2 }
To summarize, in order to check for inhabitation in the presence of
newtypes, we need to reason about the underlying type (Int in this
example), not the source type. Yet, the equivalence between the newtype
and its underlying representation needs to be accounted for when issuing
warnings: 3 has type Int, not Foo2 .

3. Data Family Redexes. GHC also extends Haskell with another variant of
datatype declarations, known as data families (Chakravarty et al., 2005b).

72 GHC IMPLEMENTATION

Data families differ from ordinary data types in that they represent an
open, indexed family of types. For example, one can abstract over monads
with support for mutable references as follows:3

class Monad m⇒ RefM m where
data Ref m v
newRef :: v → m (Ref m v)
. . .

and make both IO and ST monads instances of class RefM as follows:

instance RefM IO where
data Ref IO v = RefIO (IORef v)
newRef v = fmap RefIO (newIORef v)
. . .

instance RefM (ST s) where
data Ref (ST s) v = RefST (STRef s v)
newRef v = fmap RefST (newSTRef v)
. . .

Function newRef has the generic type

∀m. ∀v. RefM m⇒ v → m (Ref m v)

Data families are very useful in practice, but they also pose a challenge
for pattern match checking. Internally, the above data family instances
are elaborated into two separate datatype declarations, along with two
equality axioms (Sulzmann et al., 2007a):

data Ref s v

data RRefIO v = RefIO (IORef v)
data RRefST s v = RefST (STRef s v)
axiom ax1 v : Ref IO v ∼ RRefIO v
axiom ax2 s v : Ref (ST s) v ∼ RRefST s v

Thus, source appeals to the abstract type (Ref s v) are translated into
GHC’s intermediate language as explicit casts of the specialized data
types, using axioms ax1 and ax2 .
Type constructors RRefIO and RRefST are called representation
constructors. For pattern match checking we reason about representation
constructors, but the warnings issued to the programmer need to refer to
the source abstract type.

3Example borrowed from the original work of Chakravarty et al. (2005b) on data families.

EMPTY CASE EXPRESSIONS 73

Implementation All the above are handled by function

pmTopNormaliseType_maybe
:: FamInstEnvs → Type → Maybe (Type,Type, [DataCon])

Given all top-level type family axioms FamInstEnvs and the type of the scrutinee,
we generate three entities:

(a) A normalized type, which is equal to the type of the scrutinee in source
Haskell: in this type newtypes and data family redexes are not normalized.

(b) The actual normalized type which is not necessarily equal to the input type
in source Haskell: we reason about the match using the underlying type
but use the other two results to issue warnings that respect newtypes and
do not show the representation constructors.

(c) A list of all newtype data constructors, each one corresponding to a newtype
rewrite performed while computing type (b).

Next, we introduce the function

inhabitationCandidates :: FamInstEnvs → Type
→ PmM (Either Type [(ValAbs,ComplexEq,Bag EvVar)])

Function inhabitationCandidates utilizes pmTopNormaliseType_maybe to gen-
erate one of the following results:

• Left ty, in case the input type cannot be reduced to a closed algebraic
type (or if it is one trivially inhabited, like Int), or

• Right candidates, if reduction to a closed algebraic datatype is possible.
The list candidates contains all possible refinements of the appropriate
type, accompanied by the term- and type-constraints they give rise to.

Last, function checkEmptyCase′ :: Id → PmM PmResult ties them all together:
by means of function inhabitationCandidates, it generates and filters the possible
inhabitation candidates that come with unsatisfiable constraints.

The implementation of this extension can be found in GHC or the following
differential revision:

https://phabricator.haskell.org/D2105

https://phabricator.haskell.org/D2105

74 GHC IMPLEMENTATION

Example To illustrate how all the above cases come into play, consider the
following definitions:

data family T a
data instance T Int = T1 | T2 Bool

newtype G1 = MkG1 (T Int)
newtype G2 = MkG2 G1

type family F a
type instance F Int = F Char
type instance F Char = G2

In order to check expression (case (x :: F Int) of {}), we proceed as follows:

1. First, the data family declarations give rise to an abstract type T a, a
(representation) data type RTInt, and an equality axiom stating that
T Int is equal to RTInt:

data T a
data RTInt = T1 | T2 Bool
axiom ax : T Int ∼ RTInt

2. Second, we normalize type (F Int) via function pmTopNormaliseType_maybe
to compute (a) the normalized type G2 , which is equal to F Int in the
source language, (b) the normalized type RTInt, which is equivalent to
F Int in the target language but not source Haskell, and (c) the list of
newtype data constructors [MkG2 ,MkG1]: for any y of type RTInt we
have that (MkG2 (MkG1 y) :: F Int).

3. Third, function inhabitationCandidates generates all possible refinements
of y: T1 and T2 z.

4. Last, we filter out the ones for which the accompanying constraints are
unsatisfied (in this case both patterns are well-typed), to emit a warning
about the missing patterns:

MkG2 (MkG1 T1)
MkG2 (MkG1 (T2 z))

Notice that if T Int was a GADT, some of the cases could have been
ill-typed and thus removed.

PERFORMANCE IMPROVEMENTS 75

Figure 4.3 Specialized Clause Processing (Rule CConVar)

C ((Ki ~p) ~q) (Γ ` x ~u . ∆) = C ((Ki ~p) ~q) (Γ′ ` (Ki ~y) ~u . ∆′)

where ~y#Γ ~b#Γ (x : T ~τx) ∈ Γ Ki :: ∀~a. ∀~b. Q⇒ ~τ → T ~a

θ = [~τx/~a] Γ′ = Γ,~b, ~y : θ(~τ) ∆′ = ∆ ∪ θ(Q) ∪ x ≈ Ki ~y

4.3 Performance Improvements

As we mentioned in Section 4.1, we have optimized the presentation of our
algorithm in Section 3.3.2 for clarity, rather than run-time performance. Even
though we cannot improve upon the asymptotic worst-case time complexity,
various measures can improve the average performance a big deal.

The all-in-one algorithm of Figure 4.1 constitutes only a small part of the
possible improvements we can implement. In this section we discuss several
optimizations we have implemented to improve the performance of the algorithm
on the most common cases.

4.3.1 Implicit Solving

The formulation of the algorithm in both Sections 3.3.2 and 4.1.1 generates type
constraints for the oracle with a high frequency. For instance, Rule CConVar
of the C function generates a new type equality constraint τ ∼ τx every time it
fires, even for Haskell ’98 data types.

While there are good reasons for generating these constraints in general, we
can in many cases avoid generating them explicitly and passing them on to the
oracle. Instead, we can handle them immediately and much more cheaply. One
important such case is covered by the specialized variant of rule CConVar in
Figure 4.3: the type τx has the form T ~τx, where T is also the type constructor
of the constructor Ki. This means that the generated type constraint τ ∼ τx
actually has the form T ~a ∼ T ~τx. We can simplify this constraint in two steps.
Firstly, we can decompose it into simpler type equality constraints ai ∼ τx,i,
one for each of the type parameters. Secondly, since all type variables ~a are
actually fresh, we can immediately solve these constraints by substituting all
occurrences of ~a by ~τx. Rule CConVar incorporates this simplification and
does not generate any type constraints at all for Haskell ’98 data types.

Since the same applies to the computation of the uncovered and divergent

76 GHC IMPLEMENTATION

sets, we incorporate this simplification in the implementation of Rule ConVar
(Figure 4.1.1).

4.3.2 Incremental Solving

Many constraint solvers, including the OutsideIn(X) solver (Schrijvers et al.,
2009; Vytiniotis et al., 2011), support an incremental interface:

solve :: Constraint → State → Maybe State

In the process of checking given constraints C0 for satisfiability, they also
normalize them into a compact representation. When the solver believes the
constraints are satisfiable, it returns their normal form: a state σ0. When later
the conjunction C0 ∧ C1 needs to be checked, we can instead pass the state σ0
together with C1 to the solver. Because σ0 has already been normalized, the
solver can process the latter combination much more cheaply than the former.

It is very attractive for our algorithm to incorporate this incremental approach,
replace the constraints ∆ by normalized solver states σ and immediately solve
new constraints when they are generated. Because the algorithm refines step
by step one initial value abstraction into many different ones, most value
abstractions share a common prefix of constraints. By using solver states for
these common prefixes, we share the solving effort among all refinements and
greatly save on solving time. Moreover, by finding inconsistencies early, we can
prune eagerly and avoid refining in the first place.

In fact, our current oracle implementation incorporates only partially this
optimization; sharing of the oracle state is provided for term constraints only.
Section 4.4 below discusses the implementation of the oracle at length.

4.3.3 General Term Equalities

If we faithfully follow the translation of literal patterns of Figure 3.3, a literal l
should be translated (in two steps) into the following pattern vector:

x (True ← (x == l))

Hence, by applying Rule UGuard on the second pattern, constraint set ∆
will contain constraints (y ∼ False) and (y ∼ (x == l)). Since y is a fresh
term variable generated by Rule UGuard to capture the result of expression
(x == l), it can be eliminated; the above two constraints can be replaced by
False ∼ (x == l).

PERFORMANCE IMPROVEMENTS 77

Though this seemed like a needless optimization at the first stages of our
development, bug reports #11160 and #11161 illustrated that the size of
constraint sets can significantly increase in matches against literal patterns.
More specifically, #11160 includes the following function:

foo :: Int → Int
foo 1 = 0
foo 2 = 1
. . .
foo 5000 = 4999
foo n = n+ 1

With the naive translation, checking function foo generates twice as many term
equalities as needed (in this case this amounts to 10000 term equalities). Since
our term oracle is (at least) quadratic in the number of constraints, this led to
unacceptable compilation times (see #11160).

Thus, we redesigned the oracle to manipulate general term equalities of the
form e1 ∼ e2, instead of the more restrictive form x ∼ e.

4.3.4 Overloaded Literals

Similarly to simple literals l, overloaded literals ol can also introduce a severe
performance penalty if translated naively. As we illustrated in Section 3.2.2,
an overloaded literal pattern ol represents a function application (denoted as
(from ol) in Figure 3.3).

Indeed, if a class instance of the form

instance Num a⇒ Num (Maybe a) where
. . .

fromInteger i = Just (fromInteger i)

is available, one can write the following function:

f :: ∀a. ∀b. (Eq a,Num a,Num b)⇒ Maybe a→ b
f (Just 4) = 1
f 5 = 2

According to the translation given in Figure 3.3, the second clause is desugared
into the following:

x (True ← x == fromInteger 5)→ 2

Obviously, for the algorithm to process this clause with precision, the term
oracle would have to inline the definition of function fromInteger :: Num a⇒

https://ghc.haskell.org/trac/ghc/ticket/11160
https://ghc.haskell.org/trac/ghc/ticket/11161
https://ghc.haskell.org/trac/ghc/ticket/11160
https://ghc.haskell.org/trac/ghc/ticket/11160

78 GHC IMPLEMENTATION

Integer → a. As we discuss in Section 4.4.2 below, our current term oracle does
not inline function definitions so this approach would give very poor results for
overloaded literals. Furthermore, all generated constraints would be “dormant”
(and hence needlessly burden the term oracle), since the term oracle cannot
handle them.

We simplify matters by treating overloaded literals like simple literals: two
overloaded literals that look different are considered different. Of course, this
oversimplification is not faithful to their semantics. Consider for example the
following program:

instance Num Bool where f :: Bool → ()
. . . f 1 = ()
fromInteger _ = False f 2 = ()

With our current implementation, a warning of the following form is issued:

Pattern match(es) are non-exhaustive in an equation for ‘f’:
Patterns not matched: x with x not one of [1,2]

which is incorrect. To illustrate why, let us consider how function f is elaborated
internally. The definition of f is roughly equivalent to the following:

f x | x == fromInteger 1 = ()
| x == fromInteger 2 = ()

Since (fromInteger e) reduces to False for any expression e, the second clause
is redundant; in fact any other numeric literal pattern would be redundant too.
Moreover, though a clause (f 3 = . . .) is not provided, a call (f 3) (which is
equivalent to f (fromInteger 3)) results in (), not a non-exhaustiveness error.
The only ways to make function f exhaustive are either to add a catch-all
pattern x, or explicitly match against True.

The bottom line is this: reasoning about overloaded literals becomes too
complicated if we treat them faithfully to their specification. Thus, we avoid
such complexity by deliberately treating them as non-overloaded literal patterns.
This approach was taken by GHC before the development of our algorithm and
therefore Haskell users are familiar with its behavior.

4.3.5 Representation of Covered and Divergent Sets

Though both formalizations of the algorithm we presented (Sections 3.3.2
and 4.1.1) compute all three sets, only one of them is actually of importance to

PERFORMANCE IMPROVEMENTS 79

the user: the uncovered set U . The other two (covered sets C and divergent
sets D) are only of importance for answering the question “is this clause useful,
redundant, or useful only for evaluation?”.

Hence, our implementation does not keep track of the covered and divergent
sets. Instead, our representation of triples R looks more like the following:

R ::= 〈Bool,U ,Bool〉

This design choice significantly reduces both memory consumption and
processing time: the sets are neither stored, nor processed.

4.3.6 Eager Solving

Even after the implementation of all the aforementioned optimizations, our
original implementation still performed poorly in several ordinary examples. The
source of this slowdown turned out to be the exponential size of the uncovered
sets we generated.

Indeed, a closer look at the definition of patVecProc shows that the naive
implementation of the algorithm implements a generation phase first, followed
by a filtering phase. Instead, we have optimized our implementation to employ
more frequent calls to the oracles, so that the generated sets always contain
denotationally non-empty value vector abstractions.

This optimization significantly improved the performance of the algorithm in
the average case, and addressed GHC bug report #11374, among others.

4.3.7 Pattern Coercions

As we discussed in passing in Section 4.2, GHC’s intermediate language allows
explicit type casts, using type-equality witnesses (e.g., axioms ax1 and ax2 in
the previous section). This feature allows the encoding of source features that
introduce implicit type equalities, like GADTs, type families, and data families.

During type inference, proofs for implicit source-level casts are constructed,
and the syntax tree is richly decorated with type information and explicit casts.
Thus, the language of source patterns—as implemented in GHC—includes
pattern coercions. Given an explicit proof γ of type-equality τ1 ∼ τ2 and a
pattern p of type τ2, a pattern coercion (p, γ) represents a match of the form

case (x . γ) of { p→ . . . }

https://ghc.haskell.org/trac/ghc/ticket/11374

80 GHC IMPLEMENTATION

where . performs an explicit type cast. Hence, the type of the argument matched
against the pattern is of type τ1. In order to handle pattern coercions, we
extended the desugaring algorithm of Figure 3.3 to handle pattern coercions in
a type-preserving manner:

translatep((p, γ)) = x (translatep(p)← x . γ)

Unfortunately, this translation gives rise to guard patterns for programs that use
data families (the source type constructor needs to be cast to the representation
constructor), inducing a compilation slowdown. This issue is captured in GHC
bug report #11276.

Though this issue cannot be addressed in the general case (in a type-preserving
manner), we optimized our translation algorithm to omit explicit casts when
they are trivial reflexivity proofs. This minor change in combination with
the eager solving strategy we presented in Section 4.3.6 and the incremental
nature of our term oracle (see Section 4.4 below), sufficiently addressed this
performance issue.

Summary To summarize, the algorithm we developed in Chapter 3 required
several modifications for its implementation in GHC to have a competitive
performance. Fortunately, all optimizations were straightforward and easy to
implement. Most of the optimizations we discussed in this section were part of
the following revision:

https://phabricator.haskell.org/D1795

One important takeaway from this section is that pattern match checking of
structural pattern matching is significantly more efficient than checking of
non-structural pattern matching: non-structural constructs give rise to guards,
whose satisfiability we can only check by appeals to the term oracle.

This situation can be remedied if the oracle provides an incremental interface
(making the calls cheaper) and is called frequently (thus eagerly pruning
denotationally empty value vector abstractions from the generated sets).

4.4 The Oracle

As we mentioned in Section 3.1.3, the oracle judgment `Sat is treated as a black
box by the algorithm of Chapter 3. As long as it is conservative, any definition
will do, even accepting all constraints. Our implementation does quite a bit

https://ghc.haskell.org/trac/ghc/ticket/11276
https://phabricator.haskell.org/D1795

THE ORACLE 81

better than that. In this section we present the details of the oracle (for both
type- and term-level constraints) we use in our implementation.

4.4.1 Type-level Constraints

For type constraints we simply re-use the powerful type-constraint solver that
GHC uses for type inference (Vytiniotis et al., 2011): OutsideIn(X). Hence,
inconsistency of type constraints is defined uniformly and our oracle adapts
automatically to any changes in the type system, such as type-level functions,
type-level arithmetic, and so on.

More specifically, the interface with the type-constraint solver is implemented
by function tyOracle, which has the following signature:

tyOracle :: Bag EvVar → PmM Bool

In short, function tyOracle takes a set of constraints (Bag EvVar), and returns
a boolean (True if the constraints are satisfiable and False otherwise). The
result is wrapped in the PmM monad, which adds essential functionality like
looking up the types of data constructors, generating fresh names, etc.

4.4.2 Term-level Constraints

For the handling of term-level constraints, we have implemented a vestigial
satisfiability checker. Essentially, the term-oracle employs a variation of the
standard unification algorithm originally introduced Robinson (Robinson, 1965;
Martelli and Montanari, 1982)).

The oracle provides an incremental interface with the following signature

tmOracle :: TmState → [ComplexEq]→ Maybe TmState

where TmState is the type of the term oracle state and ComplexEq is a type
synonym, capturing equalities between Haskell terms:

type ComplexEq = (PmExpr ,PmExpr)

Expressions PmExpr denote lifted Haskell expressions:

e′ ::= x | K e′ | l | ol | e′1 ≈ e′2 | {e} lifted expressions

The syntax of lifted expressions e′ separates the forms the solver can reason
about from the expressions it does not handle. The latter are captured in
syntactic form {e}.

82 GHC IMPLEMENTATION

Thus, only equalities with syntactically different sides are flagged as inconsistent
(e.g., True ≈ False). This enables us to see that abs1 (Section 2.4.2) is
exhaustive, but not abs2 . There is therefore plenty of scope for improvement,
and various powerful term-level solvers, such as Zeno (Sonnex et al., 2012) and
HipSpec (Claessen et al., 2013), could be used to serve as the oracle. Indeed, as
we discussed in Section 3.5.7, the tool developed by Pavel Kalvoda and Tom
Sydney Kerckhove already investigates the incorporation of the Z3 SMT solver.

One important weakness of the current term-oracle is that it does not handle
applications (they are included in syntactic form {e}). In turn, this means that
the checker currently cannot reason about view patterns. The reason behind this
design choice is that reasoning about applications requires (a) inlining of function
definitions, and (b) partial evaluation. Though both can be implemented, they
can have a significant impact on performance. Furthermore, we have not
identified a good criterion (easy to specify from the user’s perspective) for
ensuring termination of partial evaluation. Thus, such an extension constitutes
part of our future work, once GHC users and developers reach a consensus
about the desired expressivity/performance ratio for pattern match checking.

4.5 Evaluation

Our new pattern checker addresses the three challenges laid out in Section 2.4:
GADTs, laziness, and guards. However in our evaluation, only the first turned
out to be significant. Concerning laziness, none of our test programs triggered the
warning for a clause that is irredundant, but has an inaccessible right-hand side;
clearly such cases are rare! Concerning guards, our prototype implementation
only has a vestigial term-equality solver, so until we improve it we cannot expect
to see gains.

For GADT-rich programs, however, we do hope to see improvements. However,
many programs do not use GADTs at all; and those that do often need to
match against all constructors of the type anyway. So we sought test cases by
asking the Haskell libraries list for cases where the authors missed accurate
warnings for GADT-using programs. This has resulted in identifying 9 hackage
packages and 3 additional libraries, available on GitHub.4

We compared three checkers. The baseline is, of course, vanilla GHC. However,
GHC already embodies an ad hoc hack to improve warning reports for GADTs,

4https://github.com/amosr/merges/blob/master/stash/Lists.hs
https://github.com/gkaracha/gadtpm-example
https://github.com/jstolarek/dep-typed-wbl-heaps-hs

https://github.com/amosr/merges/blob/master/stash/Lists.hs
https://github.com/gkaracha/gadtpm-example
https://github.com/jstolarek/dep-typed-wbl-heaps-hs

EVALUATION 83

GHC-1 GHC-2 New

Hackage Packages LoC M R M R M R
accelerate 11, 393 11 0 9 0 8 14
ad 1, 903 2 0 0 0 0 6
boolsimplifier 256 10 0 0 0 0 0
d-bus 2, 753 45 0 42 0 16 1
generics-sop 1, 008 0 0 0 0 0 3
hoopl 2, 147 33 0 0 0 0 3
json-sop 393 0 0 0 0 0 2
lens-sop 280 2 0 0 0 0 2
pretty-sop 27 0 0 0 0 0 1

Additional tests LoC M R M R M R
lists 66 1 0 0 0 0 3
heterogeneous lists 38 0 0 0 0 0 2
heaps 540 3 0 0 0 0 1

Table 4.1: Results

so we ran GHC two ways: both with (GHC-2) and without (GHC-1) the hack.
Doing so gives a sense of how effective the ad hoc approach was compared with
our new checker.

For each compiler we measured:

• The number of missing clauses (M). The baseline compiler GHC-1 is
conservative, and reports too many missing clauses; so a lower M represents
more accurate reporting.

• The number of redundant (R) clauses. The baseline compiler GHC-1
is conservative, and reports too few redundant clauses; so a higher R
represents more accurate reporting.

The results are presented in Table 4.1. They clearly show that the ad-hoc
hack of GHC-2 was quite successful at eliminating unnecessary missing pattern
warnings, but is entirely unable to identify redundant clauses. The latter is
where our algorithm shines: it identifies 38 pattern matches with redundant
clauses, all of them catch-all cases added to suppress erroneous warnings. We
also see a good reduction (-27) of the unnecessary missing pattern warnings.
The remaining spurious missing pattern warnings in accelerate and d-bus

84 GHC IMPLEMENTATION

involve pattern guards and view patterns; these can be eliminated by upgrading
the term-level reasoning of the oracle.

Erroneous Suppression of Warnings We have found three cases where the
programmer has erroneously added clauses to suppress warnings. We have
paraphrased one such example in terms of the Vec n a type of Section 2.3.

data EQ n m where
EQ :: n ∼ m⇒ EQ n m

eq :: Vec n a→ Vec m a→ EQ n m→ Bool
eq VN VN EQ = True
eq (VC x xs) (VC y ys) EQ = x == y && eq xs ys
eq VN (VC _ _) _ = error "redundant"
eq (VC _ _) VN _ = error "redundant"

This example uses the EQ n m type as a witness for the type-level equality
of n and m. This equality is exposed by pattern matching on EQ. Hence,
the third and fourth clauses must be redundant. After all, we cannot possibly
have an equality witness for Zero ∼ Succ n. Yes, we can: that witness is
⊥ :: EQ Zero (Succ n) and it is not ruled out by the previous clauses. Indeed,
calls of the form eq VN (VC x xs) ⊥ and eq (VC x xs) VN ⊥ are not covered
by the first two clauses and hence rightly reported missing. The bottoms can
be flushed out by moving the equality witness to the front of the argument list
and matching on it first. Then the first two clauses suffice.

GHC Tickets With the initial implementation of our new algorithm we have
also been able to close nine GHC tickets related to GADT pattern matching
(#3927, #4139, #6124, #8970) and literal patterns (#322, #2204, #5724,
#8016, #8853).

During subsequent development more bug reports and feature requests were
introduced and/or addressed (like the ones we discussed in Section 4.3). A
comprehensive list of all the bug reports concerning the current implementation
of the algorithm in GHC can be found in the corresponding GHC Wiki page:

https://ghc.haskell.org/trac/ghc/wiki/PatternMatchCheck

4.5.1 Performance Evaluation

As we discussed in Section 3.4.5, our algorithm has exponential behavior in the
worst case. Nevertheless, we expect this behavior to be rare in practice. To

https://ghc.haskell.org/trac/ghc/ticket/3927
https://ghc.haskell.org/trac/ghc/ticket/4139
https://ghc.haskell.org/trac/ghc/ticket/6124
https://ghc.haskell.org/trac/ghc/ticket/8970
https://ghc.haskell.org/trac/ghc/ticket/322
https://ghc.haskell.org/trac/ghc/ticket/2204
https://ghc.haskell.org/trac/ghc/ticket/5724
https://ghc.haskell.org/trac/ghc/ticket/8016
https://ghc.haskell.org/trac/ghc/ticket/8853
https://ghc.haskell.org/trac/ghc/wiki/PatternMatchCheck

SCIENTIFIC OUTPUT 85

confirm this expectation, we put our initial implementation (March 2015) to the
test by collecting statistics concerning the size of sets C and U our algorithm
generates for the packages of Table 4.1:

Maximum size of C/U Pattern Matches (%)
1− 9 8702 97.90%

10− 99 181 2.04%
100− 2813 5 0.06%

Since there was significant variance in the results, we divided them into three
size groups. Out of 8888 pattern matches checked in total, almost 98% of the
generated and processed sets have a size less than 10. In fact, the vast majority
(over 95%) have size 1 or 2.

The percentage of sets with size between 10 and 99 is 2.04%. We believe that
this percentage is acceptable for types with many constructors and for pattern
matches with many arguments.

Last but not least, we encountered 5 cases (only 0.06%) with extremely large sets
(≥ 100 elements). All of them were found in a specific library5 of package ad.
As expected, all these involved pattern matches had the structure of function f
from Section 3.4.5:

data T = A | B | C
f A A = True
f B B = True
f C C = True

Notably, the most extreme example which generated an uncovered set of size
2813, matches against two arguments of type T with 54 data constructors (55
including ⊥), a match that gives rise to 3025 different value combinations!

4.6 Scientific Output

This chapter has discussed several aspects of the pattern match checking
algorithm implementation in GHC. The performance evaluation of Section 4.5.1
reflects the state of the implementation at the time of publication, while the
rest of the sections present material we obtained from subsequent development.

Our pattern match checker has been part of the GHC codebase and thus
available to GHC users since version 8.0.1.6 This work restores the usefulness of

5Library Data.Array.Accelerate.Analysis.Match.
6https://downloads.haskell.org/~ghc/8.0.1/docs/html/users_guide/8.0.1-notes.

html.

https://downloads.haskell.org/~ghc/8.0.1/docs/html/users_guide/8.0.1-notes.html
https://downloads.haskell.org/~ghc/8.0.1/docs/html/users_guide/8.0.1-notes.html

86 GHC IMPLEMENTATION

pattern match checking in GHC, an issue that has been open for over a decade
(see bug report #595). In addition to restoring the developers’ faith in the
pattern match checker, the implementation of our algorithm promotes the use
of GADTs at large, with the compiler providing more accurate warnings for
programs using GADTs and other features. Finally, both the algorithm and its
implementation are easily extensible, a trait that can be put to good use in the
future when more extensions are implemented.

https://ghc.haskell.org/trac/ghc/ticket/595

Part II

Type Classes

87

Chapter 5

Background

We now turn to the second part of this thesis, which is concerned with three
extensions to Haskell’s type class system that we have developed. Before we
present the extensions in the forthcoming chapters, in this chapter we cover the
necessary background. The chapter is structured as follows:

Section 5.1 discusses the notion of polymorphism and the various forms it comes
in. Section 5.2 focuses on parametric polymorphism, and elaborates on the
polymorphic lambda calculus, also known as System F. Section 5.3 explains the
notions of type reconstruction (also known as type inference) and elaboration,
by means of the Hindley-Damas-Milner system. Finally, Section 5.4 gives an
informal overview of type classes, as presented in the literature; all formal
aspects of type classes are deferred until Chapter 6.

5.1 Polymorphism

One of the most important concepts in programming languages is that of
polymorphism. Polymorphism encapsulates the ability of a single interface to
be used for entities of different types, thus, allowing for code reusability. In
turn, reusability means more concise and safer code; the programmer needs to
implement a function correctly only once.

Polymorphism comes in various forms; below we briefly discuss those forms
that are most relevant for this thesis. A more detailed overview of the most
common kinds of polymorphism is given by Pierce (2002, Chapter 23.2).

88

POLYMORPHISM 89

5.1.1 Parametric Polymorphism

Parametric polymorphism (also known as genericity) refers to the ability to write
functions generically, so that values can be handled uniformly, independently of
their type.

More specifically, a polymorphic function is said to be parametric over the type
a of an argument if it behaves uniformly, independently of the instantiation of
a. This is illustrated in the definition of the reverse function in Haskell, which
reverses a list:

reverse :: ∀a. [a]→ [a]
reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

The type of reverse indicates that for any type a, given a list of elements of type
a, it computes a list containing elements of type a. Notice how the definition of
reverse does not inspect the elements x, but merely pattern matches against
the structure of the list. This is precisely what allows reverse to work on lists
containing elements of any type a:

Main> reverse [1,2,3]
[3,2,1]

Main> reverse ["a","b","c","d"]
["d","c","b","a"]

In the first example, reverse is applied to a list of Integers while in the second
to a list of Strings.

In general, parametrically polymorphic functions act in the same way,
independently of their instantiation. This property is known as the “abstraction
theorem” (Reynolds, 1983) or the “parametricity theorem” (Wadler, 1989). Two
highly relevant systems have this property: System F (Girard, 1972; Reynolds,
1974, 1983) and the Hindley-Damas-Milner system (Hindley, 1969; Milner, 1978;
Damas and Milner, 1982). We elaborate on them in Sections 5.2 and 5.3,
respectively.

5.1.2 Non-parametric Polymorphism

Non-parametric polymorphism refers to the ability to write functions which can
be applied to arguments of different types. Yet, a non-parametric function can
behave differently, depending on the argument types, as opposed to a parametric
function which would behave uniformly.

90 BACKGROUND

There are several kinds of non-parametric polymorphism but, for the purposes
of this thesis, we focus only on ad-hoc polymorphism. Ad-hoc polymorphism
covers all cases where case analysis on types can be resolved at compile-time,
as opposed to type dispatch, which describes a run-time dependency on case
analysis on types.

Ad-hoc Polymorphism

One prime example of ad-hoc polymorphism put to good use is Java’s overloaded
operators. Consider for example operator “+”, denoting addition, as used in
the following example:

public class OverloadingExample {
public static void main(String[] args) {
int x = 1 + 2;
System.out.println(x);

String y = "Hello " + "World!";
System.out.println(y);

}
}

In the above program, operator “+” is used to denote two different operations:
for the computation of x, integer addition is invoked, while for the computation
of y, “+” performs string concatenation. Indeed, running the program gives:

$ java OverloadingExample
3
Hello World!

However, operator overloading in Java has several limitations:

1. It is closed. The language includes a predefined set of overloaded operators
but the programmer cannot define more overloaded operators or extend
existing ones to operate on new types.

2. Overloading does not propagate. While an operator can be used on terms
of multiple types, its invocation must choose a type. In short, the enclosing
function cannot be overloaded.

In Haskell, ad-hoc polymorphism (also known as overloading) is supported by
means of type classes (Wadler and Blott, 1989). Type classes in Haskell are

SYSTEM F: THE POLYMORPHIC LAMBDA CALCULUS 91

much more flexible than overloaded Java operators, but we defer this discussion
to Section 5.4 and Chapter 6, where we discuss type classes at length.

5.2 System F: The Polymorphic Lambda Calculus

System F is one of the most important calculi in the history of functional
programming languages, due to its expressivity/complexity ratio. It has been
developed independently by Girard (1972) and Reynolds (1974, 1983), hence it
is also known as the Girard/Reynolds system.1

Due to its expressive power, it is often used as an intermediate language for
compiling functional languages (e.g., by ML and Haskell), after it has been
extended with algebraic data types. In this section we discuss all formal aspects
of this calculus; extensions of the calculus are considered later in this thesis (see
Sections 6.1 and 8.4).

5.2.1 Calculus Specification

Figure 5.1 presents the syntax, typing, and operational semantics for System F.
We discuss each in more detail below.

Syntax The syntax of System F comprises two sorts: types υ and terms t.
A type υ can either be a type variable (a), an arrow type (υ1 → υ2), or a
type abstraction (∀a. υ). Terms comprise a λ-calculus, extended with type
abstraction (Λa. t) and type application (t υ).

Typing The typing specification consists of two relations, each concerned with
one of the syntactic sorts. Both relations make use of typing environments Γ,
which keep track of bound type variables and bound term variables, along with
their type (the syntax of typing environments is also given in Figure 5.1).

Well-formedness of types takes the form Γ T̀Y υ and specifies when a type υ is
well-formed under a typing environment Γ. Since System F is uni-kinded (i.e.,
types are not classified into categories; all of them have kind ?), the relation
essentially captures the well-scopedness of a type under a given environment.

Term typing is also presented in Figure 5.1 and takes the form Γ T̀M t : υ. The
relation specifies when a term t has type υ, under an environment Γ. The

1It is also known as the polymorphic λ-calculus and the second-order calculus.

92 BACKGROUND

Figure 5.1 System F Specification: Syntax, Typing, and Operational Semantics

υ ::= a | υ1 → υ2 | ∀a. υ type
t ::= x | Λa. t | t υ | λ(x : υ). t | t1 t2 term

Γ ::= • | Γ, a | Γ, x : υ typing environment

Γ T̀Y υ Type Well-formedness

a ∈ Γ
Γ T̀Y a

Γ T̀Y υ1 Γ T̀Y υ2

Γ T̀Y υ1 → υ2

a /∈ fv(Γ) Γ, a T̀Y υ

Γ T̀Y ∀a. υ

Γ T̀M t : υ Term Typing

(x : υ) ∈ Γ
Γ T̀M x : υ

a /∈ Γ Γ, a T̀M t : υ
Γ T̀M Λa. t : ∀a. υ

Γ T̀M t : ∀a. υ Γ T̀Y υ1

Γ T̀M t υ1 : [υ1/a]υ

Γ T̀M t1 : υ2 → υ1 Γ T̀M t2 : υ2

Γ T̀M t1 t2 : υ1

x /∈ dom(Γ)
Γ T̀Y υ1 Γ, x : υ1 T̀M t : υ2

Γ T̀M λ(x : υ1). t : υ1 → υ2

t1 −→ t2 Small-step Call-by-name Operational Semantics

t1 −→ t′1
t1 t2 −→ t′1 t2 (Λa. t) υ −→ [υ/a]t (λ(x : υ). t1) t2 −→ [t2/x]t1

relation is syntax-directed on the shape of the term, hence we have one rule for
each syntactic form. This is significant, since it means that the specification of
typing for System F can also be used as a type checking algorithm. Essentially,
each term encodes its own typing derivation.

Operational Semantics Finally, Figure 5.1 presents the small-step, call-by-
name operational semantics for System F. The relation takes the form t −→ t′,
meaning that t can evaluate to t′ in one step.

The first rule is a congruence rule, allowing the reduction of the function in
a term application. Since we give call-by-name semantics, we never need to
evaluate the argument. The next two rules handle β-redexes, for type and term
application, respectively.

SYSTEM F: THE POLYMORPHIC LAMBDA CALCULUS 93

5.2.2 Meta-theoretical Properties

System F has several interesting meta-theoretical properties which we now
present.2 These properties are of importance for all calculi, so we use System
F as an opportunity to introduce them; the forthcoming chapters refer to and
revise these definitions accordingly.

Type Safety The most important property of a calculus’ type system is that
of type safety. Alternatively, as stated by Milner (1978):

Well-typed programs cannot “go wrong”.

The standard technique for proving type safety is due to Wright and Felleisen
(1994), by means of proving first two other properties: preservation (also known
as subject reduction) and progress.

Preservation Evaluation of a well-typed term does not affect its typeability;
reducing a well-typed term always results in a well-typed term.

Progress Evaluation of well-typed terms should never be “stuck”; they should
either reduce to a value or be able to reduce further.

By values we mean terms that cannot evaluate any further; for System F this
amounts to term and type abstractions:

V ::= λ(x : υ). t | Λa. t values

Using the relations of typing and operational semantics, we can formalize the
aforementioned properties (preservation and progress) for System F as follows:

Theorem 3 (Preservation). If Γ T̀M t : υ and t −→ t′ then Γ T̀M t
′ : υ.

Theorem 4 (Progress). If Γ T̀M t : υ then t is a value or ∃t′. t −→ t′.

Notice that System F (and several other calculi) supports a stronger notion of
preservation than the one we informally stated above. Well-typed System F
terms not only reduce to well-typed terms, but also they preserve their type.

2A more detailed exposition of these properties and their proofs can be found in the work
of Pierce (2002, Chapter 23).

94 BACKGROUND

Strong Normalization Strong normalization is another important property
of calculi. A calculus is said to possess the strong normalization property if
all well-typed programs expressed in the calculus halt after a finite number of
evaluation steps. Accordingly, a (well-typed) term is said to be normalizable if
its evaluation terminates. System F has the strong normalization property:

Theorem 5 (Strong Normalization). If Γ T̀M t : υ then ∃n. t −→n V .

where t −→n t′ can be read as “t evaluates to t′ in n steps”. In general, full-
blown programming languages do not (usually) posses the strong normalization
property. Indeed, the extensions of System F we will consider later in this thesis
(Sections 6.1 and 8.4) do not. Nevertheless, type safety is a desirable property
that can usually hold independently of strong normalization.

Type Erasure As illustrated in the operational semantics of System F
(Figure 5.1), type annotations do not affect the operational behavior of a
term; relation t −→ t′ ignores type annotations on λ-bound variables. In
short, if a program is well-typed, type information plays no role in its run-time
behavior; it can be omitted. This property is widely known as type erasure, and
is a property that System F possesses.

For System F terms specifically, we can define an erasure function as follows:

Definition 2 (Erasure). The erasure of a System F term t is defined as follows:

erase(x) = x
erase(Λa. t) = λ_. erase(t)
erase(t υ) = erase(t) •
erase(λ(x : υ). t) = λx. erase(t)
erase(t1 t2) = erase(t1) erase(t2)

In short, type annotations are erased, type abstraction is translated into term
abstraction (where the bound variable is irrelevant; hence the _), and type
application is translated into a term application, to a “dummy” value “•” (one
could also use unit ()). Term variables x and term applications (t1 t2) remain
unchanged.

Theorem 6 (Type Erasure). If erase(t) = te, then either (a) both t and te are
normal forms according to their respective evaluation relations (where te is a
term of the untyped λ-calculus (Church, 1936)), or (b) t −→ t′ and te −→e t

′
e

and erase(t′) = t′e.

Though not very important for theoretical purposes, type erasure is a very
desirable property in practice. If types do not affect the run-time behavior of

TYPE RECONSTRUCTION AND ELABORATION 95

a program, the ability to erase them means that the additional overhead can
be avoided. Hence, most compilers for full-blown programming languages use
type information during compilation but omit it during code generation (when
possible). Indeed, the current intermediate language used by GHC (which we
elaborate on in Section 8.4) supports type-erasure, despite the multitude of
complex features it supports. As we illustrate later in this thesis though, the
distinction between erasable and non-erasable objects significantly complicates
the development of functional dependencies (see Chapter 8).

5.3 Type Reconstruction and Elaboration

System F is a powerful calculus but requires type abstractions and applications
to be explicit, as well as explicit type annotations on all λ-abstractions. This can
easily become cumbersome, so most programming languages allow the omission
of type annotations in source programs. It then becomes the compiler’s task
to reconstruct all missing types from the program text. Such a procedure is
known as type reconstruction or type inference.

Additionally, once the missing types are retrieved by the compiler, it is often
useful to preserve them through several compilation phases (e.g., for applying
type-preserving optimizations). To this end, most compilers use intermediate
languages for the internal representation of programs, which are in principle
more explicit than the source language. The process of translating source
programs into the intermediate representation is often referred to as elaboration.

In this section we thoroughly discuss the notions of type inference and
elaboration, which will be heavily referred to in the remainder of this
thesis. Both procedures are presented using the Hindley-Damas-Milner system
(HM) (Hindley, 1969; Milner, 1978; Damas and Milner, 1982) as our source
language, and System F as the language we elaborate HM programs to.

5.3.1 The Challenge of Type Reconstruction

The question of whether all or most type annotations can be erased from the
source program and be reconstructed has several aspects. Firstly, we need
to know whether type reconstruction is possible. Secondly, if it is, the next
question is how it can be achieved. Thirdly, we want a type inference algorithm
to be well-behaved, which involves several required properties it should possess.

96 BACKGROUND

Unfortunately, Wells (1993) has proven that type reconstruction is undecidable
for System F in the general case. The main problem is rooted in the lack of the
principal type property for the erased system.3

Principal Type Property We say that a type system has the principal type
property if every term that is typeable with respect to the type system has a
principal type. By principal type, we mean the most general type; all other
types the term can have are instances of the principal type.

As an example, consider function fst, which extracts the first element of a tuple:

fst (x, y) = x

What type should be assigned to fst? All of the following are possible:

fst :: (Int,Char)→ Int fst :: ∀d. (Int, d)→ Int
fst :: ∀c. (c, Int)→ c fst :: ∀a. ∀b. (a, b)→ a

It is not difficult to see that the first three signatures are more specific than
the last, which is indeed the principal type; all three can be obtained by
appropriately instantiating the principal type (∀a. ∀b. (a, b)→ a).

The notion of instantiation of the principal type indicates the existence of a
subsumption relation (partial order) between types: two types can either be
incomparable, or one is more general than the other. We formalize this notion
in Section 5.3.3.

Notice that the principal type property is not a property of a type inference
algorithm but a property of the type system itself. Of course, if a type system
has the principal type property, it is desirable that a type inference algorithm
can infer the principal type. We return to this in Section 5.3.3.

System F without type annotations does not possess the principal type property,
due to higher-rank types and impredicativity.

Higher-rank Types We say that a function has a higher-rank type if one of
its arguments has a polymorphic type. To illustrate how this poses an issue for
type inference, consider the following example from Vytiniotis et al. (2008):

f get = (get 3, get True)
3That is, the untyped λ-calculus (Church, 1936) with the type system of System F.

TYPE RECONSTRUCTION AND ELABORATION 97

What type should be inferred for f? Both of the following are valid, yet
incomparable (none is more general than the other):

f :: (∀a. a→ a)→ (Int,Bool)
f :: (∀a. a→ Int)→ (Int, Int)

In fact, f does not have a principal type, i.e., there exists no type that is more
general than the two above.

Impredicativity (First-class Polymorphism) A type system is called impredica-
tive if it allows instantiation of type variables with polymorphic types. Another
succinct example from Vytiniotis et al. (2008) illustrates how impredicativity
can render type inference problematic:

choose :: ∀a. a→ a→ a
id :: ∀b. b→ b

What type should be inferred for the expression (choose id)? Again, we have
(at least) two options:

choose id :: ∀a. (a→ a)→ (a→ a)
choose id :: (∀b. b→ b)→ (∀b. b→ b)

The above types are again incomparable (their shape differs); the expression
once again has no principal type.

Summary In summary, higher-rank types and impredicative polymorphism
pose significant difficulties for annotation-free type inference. Thus, most
functional programming languages implement more restrictive type systems.
The most notable (and well-behaved) calculus is the one designed by Hindley,
Damas, and Milner (Hindley, 1969; Milner, 1978; Damas and Milner, 1982),
which is the focus of the remainder of this section.

5.3.2 The Hindley-Damas-Milner System

In order to avoid the aforementioned problems, the Hindley-Damas-Milner (HM)
system internalizes the restrictions of predicativity and rank-1 polymorphism,
by stratifying types into two categories: monomorphic types (also known as
monotypes), and type schemas (also known as polytypes). In the remainder of
this section we discuss the formal aspects of the Hindley-Damas-Milner system.

98 BACKGROUND

Figure 5.2 Hindley-Damas-Milner: Syntax

τ ::= a | τ1 → τ2 monotype
σ ::= τ | ∀a. σ type scheme
e ::= x | λx. e | e1 e2 term

Syntax

The syntax of types and terms for the HM system is presented in Figure 5.2.
A monotype is denoted by τ and can be either a type variable a or a function
type τ1 → τ2. A polytype σ can consist of any number of quantifiers, followed
by a monotype. Hence, a polytype σ can always be written in the form ∀a. τ ,
which is known as prenex normal form (Hilbert and Bernays, 1934).

Terms e comprise a λ-calculus: they consist of term variables x, lambda
abstractions λx. e, and term applications e1 e2.

Specification of Typing and Elaboration into System F

Figure 5.3 presents the specification of typing and elaboration into System F
for HM types and terms.

Type Well-formedness Relation Γ T̀Y σ υ captures type well-formedness
and can be read as “under typing environment Γ, type σ is well-formed and can
be elaborated into System F type υ”.

Similarly to System F, HM is uni-kinded so the relation essentially checks that
type σ is well-scoped under environment Γ. Furthermore, due to polytypes σ
being a strict subset of System F types υ, elaboration performs the identity
transformation.

Term Typing Term typing takes the form Γ T̀M e : σ t and is also presented
in Figure 5.3. It checks that, under a typing environment Γ, a term e has type
σ and elaborates to a System F term t.

In contrast to System F, the rules are not syntax-directed; since typing
information is implicit, a term can be assigned multiple types. Rule TmVar
handles term variables and is straightforward. Rules (∀I) and (∀E) handle
type abstraction and type application, respectively. Notice how Rule (∀E) uses

TYPE RECONSTRUCTION AND ELABORATION 99

Figure 5.3 Hindley-Damas-Milner: Typing and Elaboration Specification

Typing Environment Γ ::= • | Γ, a | Γ, x : σ

Γ T̀Y σ υ HM Type Well-formedness with Elaboration into System F

a ∈ Γ
Γ T̀Y a a

TyVar
Γ T̀Y τ1 υ1 Γ T̀Y τ2 υ2

Γ T̀Y τ1 → τ2 υ1 → υ2
TyArr

a /∈ Γ Γ, a T̀Y σ υ

Γ T̀Y ∀a. σ ∀a. υ
TyAll

Γ T̀M e : σ t HM Term Typing with Elaboration into System F

(x : σ) ∈ Γ
Γ T̀M x : σ x

TmVar
a /∈ Γ Γ, a T̀M e : σ t

Γ T̀M e : ∀a. σ ∀a. t
(∀I)

Γ T̀M e : ∀a. σ t Γ T̀Y τ υ

Γ T̀M e : [τ/a]σ t υ
(∀E)

x /∈ dom(Γ) Γ T̀Y τ1 υ1 Γ, x : τ1 T̀M e : τ2 t

Γ T̀M λx. e : τ1 → τ2 λ(x : υ1). t2
(→I)

Γ T̀M e1 : τ1 → τ2 t1 Γ T̀M e2 : τ1 t2

Γ T̀M e1 e2 : τ2 t1 t2
(→E)

meta-variable τ to enforce the predicativity of the system: a polymorphic type
can only be instantiated with a monotype. Also, the elimination of the quantifier
in e’s type is reflected in the elaborated term in the form of an explicit type
application.

Similarly, Rules (→I) and (→E) capture term abstraction and application,
respectively. Both rules are mostly straightforward. The most interesting aspect
of them lies in the usage of meta-variables. In Rule (→I), a λ-bound variable
can only have a monotype, effectively enforcing the rank-1 restriction. Similarly,
Rule (→E) enforces the argument to have a monomorphic type.

100 BACKGROUND

Type Reconstruction and Elaboration into System F

We now turn to the aspect of type inference and elaboration into System F for
the system of Figure 5.3.

Algorithm Structure The algorithm proceeds in three steps:

Constraint Generation In the first phase, a type is inferred for the given
term, using fresh type variables for yet unknown types. Constraints are
also gathered, capturing restrictions on type variables imposed by the
program structure.

Constraint Solving In the second phase, the constraints are solved, giving
rise to a type substitution which refines the unknown type variables with
concrete types.

Type Refinement and Generalization In the third phase, the substitution
is applied to the inferred type (and elaborated term) which is then
generalized: all non-unified type variables are universally quantified in the
result.

All three parts of the algorithm are formally presented in Figure 5.4. We
elaborate on each below. Before we do so, we introduce two intermediate
constructs: type substitutions θ and sets of equality constraints E :

θ ::= • | θ · [τ/a] type substitution
E ::= • | E , τ1 ∼ τ2 type equalities

A type substitution θ maps type variables to monotypes, facilitating the
predicativity restriction. Sets of equalities E include equalities between
monotypes. We represent sets of equalities as snoc-lists but this is mere notation;
the order of equalities is irrelevant.

Constraint Generation Constraint generation, the first part of the algorithm,
is performed by relation Γ T̀M e : τ t | E . Given a typing environment Γ
and a term e, it infers a monotype τ , gives rise to a set of wanted equality
constraints E , and elaborates e into a System F term t. Each rule handles a
different syntactic form:

Rule TmVar handles term variables. Polymorphic types ∀a. τ are instantiated
with fresh unification4 variables b. This is also reflected in the elaborated

4That is, type variables representing yet unknown types. During constraint solving such
type variables are replaced by actual types.

TYPE RECONSTRUCTION AND ELABORATION 101

Figure 5.4 Hindley-Damas-Milner: Type Inference with Elaboration
Γ T̀M e : τ t | E Constraint Generation with Elaboration

(x : ∀a. τ) ∈ Γ θ = [b/a] b fresh
Γ T̀M x : θ(τ) x b | •

TmVar

x /∈ dom(Γ) a fresh Γ, x : a T̀M e : τ t | E
Γ T̀M λx. e : a→ τ λ(x : a). t | E

(→I)

Γ T̀M e1 : τ1 t1 | E1 Γ T̀M e2 : τ2 t2 | E2 a fresh
Γ T̀M e1 e2 : a t1 t2 | E1,E2, τ1 ∼ τ2 → a

(→E)

unify(E) = θ⊥ Type Unification Algorithm

unify(•) = •
unify(E , b ∼ b) = unify(E)
unify(E , b ∼ τ) = unify(θ(E)) · θ b /∈ fv(τ) ∧ θ = [τ/b]
unify(E , τ ∼ b) = unify(θ(E)) · θ b /∈ fv(τ) ∧ θ = [τ/b]
unify(E , (τ1 → τ2) ∼ (τ3 → τ4)) = unify(E , τ1 ∼ τ3, τ2 ∼ τ4)

G̀EN e : σ t Type Refinement and Generalization

• T̀M e : τ t | E unify(E) = θ a = fv(θ(τ))
G̀EN e : ∀a. θ(τ) Λa. θ(t)

Gen

term, where type instantiation becomes explicit via type application. Since
the appearance of a term variable alone implies no additional constraints, the
generated set of equalities is empty.

Rule (→I) handles term abstractions. First, we generate a fresh type variable
to capture the unknown type of the λ-bound term variable. Then, the body of
the λ-abstraction is recursively checked.

Finally, Rule (→E) handles term applications. After we infer a type for each
subterm, we generate a fresh type variable a to capture the result type and
record that the application is well-formed if the type of e1 is a function type,
and the argument type matches that of e2.

102 BACKGROUND

Constraint Solving Constraint solving is implemented by function unify which
takes a set of equalities E and produces as a result a type substitution θ.
Unification is a partial function, which we capture in the signature: unify(E) =
θ⊥. The original algorithm has been designed by Robinson (1965) but function
unify implements a variant of a more efficient algorithm, originally designed
by Martelli and Montanari (1982).

The first two clauses are straightforward: In case the set of equalities is empty,
the result is the trivial (empty) substitution. In case both sides of the inspected
equality are the same type variable, the equality adds no information and is
thus dropped.

The third and fourth clauses are identical, since equality is symmetric. These
cases handle equalities whose one side is occupied by a type variable. Before we
unify b with τ , we need to ensure that b does not appear in the free variables of
τ , a check known in the literature as the occurs check. Unification of a type
variable a with a type containing a would lead to a being unified with an infinite
type. For example, the solution of equation a ∼ [a] would be a = [[[. . .]]].

Finally, the fifth clause handles cases where both sides of the equality are function
types. The clause decomposes the equality to two simpler ones (the types
involved are smaller), using the knowledge that the function type constructor is
injective,5 and recurses.

In all other cases, unification fails.

Type Refinement and Generalization The above two procedures (constraint
generation and solving) are invoked by Rule Gen. For a given term e, we first
infer a monotype τ and a set of wanted equality constraints E . Then, we invoke
the unification algorithm, resulting in a solution θ. If unification is successful,
the resulting substitution θ is used to refine the unification variables in τ , as
well as the elaborated term t.

Unification variables that remain free after applying the substitution can be
handled in two different ways:

Specialization In a closed program setting, free variables after type inference
represent terms that are not used by the program. Hence, their type is
irrelevant and can be instantiated freely. The approach taken in these

5That is, τ1 → τ2 ∼ τ3 → τ4 implies τ1 ∼ τ3 and τ2 ∼ τ4.

TYPE RECONSTRUCTION AND ELABORATION 103

cases is to instantiate (specialize) free variables with a trivial type (e.g.
()).6

Generalization All type variables that are not unified with concrete types can
be abstracted over; the term under consideration behaves parametrically
over them. This is the approach that HM takes (as well as most functional
languages).

Standard HM takes the second approach: in Rule Gen we collect all free
variables in the substituted type and abstract over them in the resulting type
∀a. θ(τ). In the elaborated term, this becomes syntactically explicit via type
abstractions: Λa. θ(t). Since HM types (both monotypes and polytypes) are a
strict subset of System F types, we simplify matters by applying a source-level
substitution θ directly on a System F term. In cases where source and target
types differ, one would have to elaborate the substitution to refer to target
types before applying it to System F terms. This is the case for more advanced
systems, like the ones we present in the remainder of Part II.

Example To see how all the above come together, consider performing type
inference with elaboration on the following expression:

λf. λg. λx. f (g x)

First, constraint generation assigns the following types

f : a g : b x : c (g x) : d f (g x) : e

where a, b, c, d, and e are fresh type variables. Due to the two applications ((g x)
and (f (g x))), the following equalities are also generated (via Rule (→E)):

E = { b ∼ c→ d, a ∼ d→ e }

The generated System F term simply annotates the λ-bound variables with
their types:

λ(f : a). λ(g : b). λ(x : c). f (g x)

Second, constraint solving (unification) successfully replaces equalities E with
type substitution θ = [(d→ e)/a, (c→ d)/b]. Hence, the types of all subterms
are refined to

f : d→ e g : c→ d x : c (g x) : d f (g x) : e
6See also the work of Bjørner (1994), which introduces algorithm M. Just as algorithm W

computes most general typing derivations, Algorithm M computes least typing derivations,
by specializing free variables with concrete types.

104 BACKGROUND

and the elaborated term to

λ(f : d→ e). λ(g : c→ d). λ(x : c). f (g x)

Finally, generalization abstracts over the remaining type variables, to compute
the overall type

∀d. ∀e. ∀c. (d→ e)→ (c→ d)→ c→ e

which is also reflected in the elaborated System F term

Λd. Λe. Λc. λ(f : d→ e). λ(g : c→ d). λ(x : c). f (g x)

5.3.3 Meta-theoretical Properties

The HM system has several meta-theoretical properties, which we now discuss.7
In cases where we want to refer to the typing relation without the elaboration,
we simply omit the elaboration-related aspects of the relations of Figure 5.3.
That is, we write Γ T̀M e : σ instead of Γ T̀M e : σ t, and similarly for the other
relations.

Termination of Type Inference

First, type inference for the HM system is decidable and terminating:
Theorem 7 (Termination). The type inference algorithm of Figure 5.4
terminates on all inputs.

Principality of Types

Next, the specification of HM typing (Figure 5.3) possesses the principal type
property:
Theorem 8 (Principal Types). If e is well-typed, then there exists a type σ0
(the principal type), such that Γ T̀M e : σ0 and, for all σ such that Γ T̀M e : σ, we
have that Γ |= σ0 � σ.

Here relation Γ |= σ0 � σ defines type subsumption:

Γ, a T̀Y τi τa = [τ/b]τb
Γ |= (∀a. τa) � (∀b. τb)

(�)

7A more detailed exposition of these properties and their proofs can be found in the work
of Pierce (2002, Chapter 22).

TYPE RECONSTRUCTION AND ELABORATION 105

In this simple setting, type subsumption accounts for instantiation and
reordering of universal quantifiers. In later chapters we consider more
complicated specifications of type subsumption.

Furthermore, the inference algorithm of Figure 5.4 infers the principal type:

Theorem 9 (The Algorithm Infers Principal Types). If G̀EN e : σ, then for all
σ′ such that • T̀M e : σ′, we have that • |= σ � σ′.

Notice that type subsumption has a very direct interpretation in the elaboration
of a term: the first premise of Rule (�) (Γ, a T̀Y τ) captures type abstraction
(over variables a) and the second premise captures type application (on types
τ). That is, if Γ T̀M e : σ1 t1, Γ T̀M e : σ2 t2, and Γ |= σ1 � σ2, we have
that

Γ T̀M (Λa. t2 τ) : σ1

where a and τ are the corresponding parameters from premise Γ |= σ1 � σ2.

Preservation of Typing Under Elaboration

Another important property of HM is that elaboration preserves typeability.
That is, well-typed HM terms are elaborated into well-typed System F terms:

Theorem 10 (Type-preserving Elaboration). If Γ T̀M e : σ t then Γ T̀M t : σ.

In fact, Theorem 10 above states a stronger property: not only are typeable
terms elaborated into typeable terms but additionally the target type is the
elaboration of the source type.8

Soundness

The algorithm of Figure 5.4 is sound (in terms of both typing and elaboration),
with respect to the specification of Figure 5.3:

Theorem 11 (Algorithm Soundness). If G̀EN e : σ t, then • T̀M e : σ t.
8Since HM types are a subset of System F types we do not elaborate them to avoid

notational clutter but one would formally write the above theorem as “If Γ T̀M e : σ t
then elabTE(Γ) T̀M t : elabTY(σ)”, where functions elabTE(·) and elabTY(·) elaborate HM typing
environments and types, respectively.

106 BACKGROUND

Completeness

The algorithm of Figure 5.4 is complete, with respect to the specification of
Figure 5.3. That is, for any term that is typeable under the typing specification,
the type inference algorithm succeeds:

Theorem 12 (Completeness of Type Inference). If • T̀M e : σ, then G̀EN e : σ′,
for some σ′.

In fact, as we stated in Theorem 9 above, σ′ is not just some type; it is the
principal type.

Coherence

Finally, the elaboration algorithm of Figure 5.4 is coherent: for any expression
e, any two derivations result in System F terms with the same operational
behavior. In layman’s terms, the behavior of a program is completely specified
by the source text; the inference algorithm makes no choices. There are several
ways to formally state this property; we choose one of the most compact:

Theorem 13 (Elaboration is Coherent). If G̀EN e : σ1 t1 and G̀EN e : σ2 t2,
then erase(t1) = erase(t2) = e.

Note that by function erase(·) we denote a stronger erasing function than the
one we defined in Definition 2; in the above theorem, we use erase(e) to denote
an erasing function that erases all type information and structure from e:

erase(x) = x
erase(Λa. t) = erase(t)
erase(t υ) = erase(t)
erase(λ(x : υ). t) = λx. erase(t)
erase(t1 t2) = erase(t1) erase(t2)

The difference between erase(e) presented in Definition 2 and the one we
define here lies in the treatment of type abstraction and type application: the
latter erases both. Though the two have different properties, for call-by-name
semantics (that we are targeting in this thesis) they can be considered equivalent.

Summary In summary, HM is a well-behaved system with several important
meta-theoretical properties. It forms the basis for ML-style type systems
(including Haskell’s) and type classes have also been developed as an extension
of the HM system. All the aforementioned properties hold for HM with type

TYPE CLASSES: AD-HOC POLYMORPHISM IN HASKELL 107

classes (see Chapter 6) and it is desirable that they also hold for all the extensions
we develop in the forthcoming chapters. Hence, each of Chapters 7, 8, and 9
carefully refines these properties to reflect differences in the corresponding
extended systems.

5.4 Type Classes: Ad-hoc Polymorphism in Haskell

“Mathematics is the art of giving the same name to different things.”

—Henri Poincaré

We now turn to the core of this chapter: type classes. Type classes were first
introduced by Wadler and Blott (1989) as a principled way to support ad-hoc
polymorphism in Haskell, and have become one of Haskell’s cornerstone features.
They support sound, decidable, and efficient HM-based type inference.

They first became highly successful in Haskell (Peyton Jones, 2003), were later
adopted by other declarative languages like Mercury (Henderson et al., 1996)
and Coq (The Coq development team, 2004), and finally influenced the design
of similar features (e.g., concepts for C++ (Gregor et al., 2006) and traits for
Rust (Shärli et al., 2002; Ducasse et al., 2006)).

Furthermore, over the years type classes in Haskell have been the subject of
many language extensions that increase their expressive power and enable
new applications. Examples of such extensions include multi-parameter type
classes (Jones et al., 1997), functional dependencies (Jones, 2000), and associated
types (Chakravarty et al., 2005a).

In this section we focus on the original design of type classes. More specifically,
we (a) describe type classes from the user’s point of view, (b) revisit the
interpretation of type classes with respect to (first-order) predicate logic, as
well as more constructive theories like System F, and (c) introduce the basic
terminology. The tone of this section is strictly informal; we formalize all aspects
of type classes in Chapter 6.

5.4.1 Type Classes, Informally

Given that type classes were designed to introduce overloading in Haskell, the
main motivation for a programmer to use type classes is the encapsulation of
common behavior within a single interface. We illustrate below each aspect of
their usage through a series of examples in plain Haskell.

108 BACKGROUND

Class Declarations As an example, consider type class Eq, as defined in the
standard Prelude:9

class Eq a where
(==) :: a→ a→ Bool

The above declaration defines a new type class, called Eq, which captures types
whose elements can be compared for equality. It provides a method, (==), which
can be used to compare two elements of type a for equality. Operator (==) is
said to be overloaded, since its implementation may vary, depending on the type
of arguments it is supplied with. Hence, its actual type is

(==) :: Eq a⇒ a→ a→ Bool

Equipped with such a type class, one can write function elem, which checks
whether a value of type a is an element of a list of type [a], for any type a, as
long as it is an instance of the Eq class:

elem :: Eq a⇒ a→ [a]→ Bool
elem x [] = False
elem x (y : ys) = (x == y) || (elem x ys)

The type of elem is what is known as a qualified type (Jones, 1992), since it
qualifies the simple type (a→ [a]→ Bool) with the logical predicate (Eq a).

Of course, using function elem above on concrete values requires us to provide
instances for the Eq class for the involved types. We elaborate on this next.

Concrete Type Class Instances A type class instance axiomatically declares
that a type is an instance of a particular class, by means of providing
implementations for the class methods. For example, we can make Bool an
instance of the Eq class as follows:

instance Eq Bool where
x == y = eqBool x y

where
eqBool :: Bool → Bool → Bool
eqBool True True = True
eqBool False False = True
eqBool _ _ = False

It is important to note here that the way a type instantiates a class is completely
up to the user. For example, the following instance which always considers

9Type class Eq contains one more method in the standard prelude ((/=) :: a→ a→ Bool),
for inequality checking but we omit it for brevity.

TYPE CLASSES: AD-HOC POLYMORPHISM IN HASKELL 109

two values of type Bool to be equal would also be acceptable (though not very
sensible):

instance Eq Bool where
_ == _ = True

Generic Type Class Instances Haskell allows one to give instances not only
for concrete types, such as Bool, but also for generic datatypes, such as [a]:

instance Eq a⇒ Eq [a] where
[] == [] = True
(x : xs) == (y : ys) = (x == y) && (xs == ys)
_ == _ = False

Such an instance can be read as “for any type a, if a is an instance of Eq
then [a] is also an instance of Eq”. In short, such an instance does not make
[a] an instance of Eq, but merely specifies how one can be derived, under the
assumption that Eq a is available.

The constraints that are left of the “⇒” form the instance context (in this case
the instance context contains only one constraint, Eq a), while Eq [a] is referred
to as the instance head.

The second clause of the implementation of function (==) above illustrates some
of the flexibility of type classes. First, expression (x == y) compares elements
of type a, showing that constraints from the instance context can be exploited
in the implementation of the methods. Second, expression (xs == ys) compares
elements of type [a]: method implementations can be recursive, and also utilize
the class instance being defined.

Superclasses Another feature of type classes is that of superclasses. We say
that a class is a superclass of another class if the latter always implies the
former. For example, the standard definition of the Ord class (which encodes
all types whose elements can be compared for ordering) looks as follows:

class Eq a⇒ Ord a where
(<) :: a→ a→ Bool

In layman’s terms, no type can be an instance of the Ord class unless it is also
an instance of the Eq class. In practice, this manifests itself in two ways:

1. When a programmer specifies that a type is an instance of a class, the
compiler ensures that the corresponding superclass constraints are satisfied.
If not, the program is rejected.

110 BACKGROUND

2. When a constraint of the form Ord τ is available in a part of a program,
constraint Eq τ can also be automatically derived by the system, for any
type τ . As an example, consider the following function which sorts a list
and removes duplicate entries:

ordNub = map head . group . sort

where
map head :: [[a]]→ [a]
group :: Eq a⇒ [a]→ [[a]]
sort :: Ord a⇒ [a]→ [a]

Since Eq is a superclass of Ord, ordNub can be given type

ordNub :: Ord a⇒ [a]→ [a]

instead of the more verbose

ordNub :: (Eq a,Ord a)⇒ [a]→ [a]

5.4.2 Logical Reading of Type Classes

At the term level, type classes are used to capture function overloading. At
the type level though, classes represent predicates over types. This is the
approach we take here. In fact, the connection of type classes with first-
order predicate logic has been the main inspiration for our work, to be
presented in the forthcoming chapters. For now, we informally discuss the
interpretation of existing type class features into first-order predicate logic; the
logical interpretation of our extensions will be discussed in the corresponding
chapters.

First-order Logic in a Nutshell

Syntax Firstly, logical terms t can take one of two forms: either a term variable
x , or a saturated function application fn(tn), where fn denotes a function symbol
of arity n. The syntax of logical terms is inductively defined as follows:

t ::= x | fn(tn) term

Term variables x usually range over a domain of discourse; for our purposes,
Haskell’s types play the role of logical terms and the domain of discourse is
monotypes τ .

TYPE CLASSES: AD-HOC POLYMORPHISM IN HASKELL 111

Secondly, logical formulas φ represent logical statements and are inductively
defined as follows:

φ ::= φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 → φ2 | φ1 ↔ φ2 formula
| ¬φ | ∀x. φ | ∃x. φ | pn(tn) | t1 = t2

The first row presents forms built by using the binary logical connectives:
conjunction (∧), disjunction (∨), implication (→), and biconditional (↔).
Furthermore, if φ is a formula, its negation ¬φ is also a valid formula. Forms
∀x. φ and ∃x. φ capture universal and existential quantification, respectively.
Finally, a formula can be formed by using a predicate symbol pn(tn) (of arity
n) over n terms, or the equality symbol “=” over two terms (denoting the
statement that the two terms are equal).

Well-scoped formulas10 are known as sentences. In this thesis we are only
concerned with sentences. Function symbols (fn) and predicate symbols (pn)
are known as the non-logical symbols of the logic; when giving semantics to the
subset of logic at hand, one must give an interpretation for all non-logical symbols.
Also, formulas of the form pn(tn) and t1 = t2 are called atomic; constraints
in Haskell ’98 (Peyton Jones, 2003) are always atomic, and particularly of the
form p1(t). In the forthcoming chapters, we lift this restriction in several ways
(see Chapters 7 and 8).

Semantics The standard semantics for first-order predicate logic have been
given by Tarski (1933). In essence, the interpretation of the logic (a) assigns
a denotation to all non-logical symbols (predicate and function symbols), and
(b) specifies a domain of discourse for term variables, which determines the
range of the quantifiers.

The interpretation of a function symbol fn is an n-ary function (in the
mathematical sense). Predicate symbols pn are interpreted extensionally, that
is, as a finite enumeration of n-ary tuples. Then, formula pn(t1, . . . , tn) is true
iff the tuple consisting of the interpretation of all terms t1, . . . , tn is an element
of the interpretation of pn.

Datatype Declarations

Since our domain of discourse is types, a data type declaration introduces a new
function symbol. For example, type Bool can be viewed as a function symbol

10A formula is well-scoped if all variables appearing in the formula are explicitly bound by
a quantifier. A variable appearing outside the scope of a corresponding quantifier is called
“unbound” or “free”.

112 BACKGROUND

of arity 0:
data Bool = False | True

We also refer to function symbols of arity 0 as type constants. Similarly, the list
datatype introduces another function symbol, of arity 1:

data [a] = [] | a : [a]

Simply stated, the arity of the type constructor is the arity of the function
symbol it introduces. Furthermore, type constructors are uninterpreted: if
one were to assign Tarski’s semantics (set-theoretic) to Haskell’s types, a type
constructor would be interpreted as itself (much like a type constant), as opposed
to proper type-level functions which would reduce to possibly a different type.
We return to this distinction in Chapter 8.

Class Declarations

Type class declarations also introduce non-logical symbols. For example, the
declaration for Eq

class Eq a
introduces a new predicate symbol, of arity 1. In general, single-parameter
type classes introduce predicate symbols of arity 1, and multi-parameter type
classes (Jones et al., 1997) introduce predicate symbols of arity equal to the
number of their parameters.

In case a class declaration specifies superclass constraints, the class declaration
also gives rise to logical implications. Take for example the Ord class declaration:

class Eq a⇒ Ord a

Haskell implicitly quantifies over type variables; with explicit quantification,
the above class declaration corresponds to the following logical implication:

∀a. Ord a→ Eq a

Since the satisfiability of Eq τ is a prerequisite for making τ an instance of Ord,
Ord τ always implies Eq τ , for any type τ .

Instance Declarations

Concrete instance declarations (i.e., instance declarations for concrete types) can
also be directly interpreted as logical formulas. More specifically, an instance
declaration like

instance Eq Bool

TYPE CLASSES: AD-HOC POLYMORPHISM IN HASKELL 113

introduces an axiom, stating that Eq Bool is true. Generic instance declarations,
like the Eq instance for lists we presented earlier

instance Eq a⇒ Eq [a]

correspond to logical implications. The implicitly-quantified type variables from
the instance head and context are again explicitly universally quantified, to give
rise to the following formula:

∀a. Eq a→ Eq [a]

5.4.3 Constructive Interpretation of Type Classes

The interpretation of type classes in terms of first-order logic sufficiently explains
their logical meaning but leaves several of their aspects unspecified. The logical
interpretation neither specifies how method overloading should behave at run-
time, nor how to translate this source-level feature to an intermediate language
akin to System F.

Following the approach of Wadler and Blott (1989), we now present an
interpretation of type classes in terms of a constructive logic, by means of
elaboration. We keep the presentation strictly informal, by presenting the
original11 translation of type classes into plain Haskell ’98 (Peyton Jones, 2003);
the formal presentation of this translation into System F can be found in the
next chapter.

Class Declarations Each class declaration gives rise to a datatype declaration,
which is a term-level encoding of the witness that a class constraint is satisfied.
Consider for example the class declaration for Eq:

class Eq a where
(==) :: a→ a→ Bool

Such a declaration is elaborated into a data declaration as the following:

data EqD a = EqDict (a→ a→ Bool)

In essence, a term of type (EqD τ) encodes a proof that type τ is an instance of
the Eq class. Such terms are known in the literature as “dictionaries” (Wadler
and Blott, 1989). Of course, for such a term to be created, one must supply
an implementation of the method, of type (a→ a→ Bool). Notice that even

11Most of the examples in this section can be found in the work of Wadler and Blott (1989).

114 BACKGROUND

though each instance provides its own implementation for the method, the
extraction of the method from a dictionary of the appropriate type can be
implemented generically:

(==) :: EqD a→ a→ a→ Bool
(==) (EqDict eq) = eq

In case there are superclasses involved, the translation is slightly different. Let
us consider for example the translation of the Ord class declaration:

class Eq a⇒ Ord a where
(<) :: a→ a→ Bool

As we mentioned earlier in Section 5.4.1, Eq being a superclass of Ord means
that giving an instance for Ord τ requires that Eq τ is also proven. That
is, while checking the instance declaration for Ord τ , the compiler needs to
create a dictionary of type EqD τ . In order to be able to retrieve superclass
constraints generically, the dictionary-passing translation of type classes stores
all superclass dictionaries within the dictionary in question. In terms of the
Ord class example, this amounts to the following definition:

data OrdD a = OrdDict (EqD a) (a→ a→ Bool)

Method extraction remains the same, but of course needs to account for the
additional contents of the dictionary it matches against:

(<) :: OrdD a→ a→ a→ Bool
(<) (OrdDict s lt) = lt

Similarly, superclass extraction can be achieved by pattern matching and
selection of the appropriate subterm. For example, extraction of Eq a from
Ord a corresponds to the following function:

super_ord :: OrdD a→ EqD a
super_ord (OrdDict s lt) = s

Class Instances Class instances for concrete types give rise to top-level
dictionary definitions. In essence, a class instance provides proof that a type is
an instance of a class, by means of providing an implementation for the class
methods. For example, the Eq instance for Bool

instance Eq Bool where
x == y = eqBool x y

TYPE CLASSES: AD-HOC POLYMORPHISM IN HASKELL 115

is translated to a top-level value binding eqDBool:
eqDBool :: EqD Bool
eqDBool = EqDict eqBool

Generic type class instances with a non-empty context give rise to term-level
functions which take dictionaries as arguments and return dictionaries as a
result. Let us consider the translation of the Eq instance for [a] we presented
earlier:

instance Eq a⇒ Eq [a] where
[] == [] = True
(x : xs) == (y : ys) = (x == y) && (xs == ys)
_ == _ = False

Such an instance cannot be elaborated into a dictionary: the instance declaration
shows how to derive a dictionary for Eq [a], given that a dictionary for Eq a
is available. In short, instead of a concrete dictionary, a generic instance
declaration with a non-empty context represents a dictionary transformer: a
term-level function which transforms a set of dictionaries (instance context)
into another dictionary (instance head). Thus, the above instance is elaborated
into the following function:

eqDList :: EqD a→ EqD [a]
eqDList eqda = EqDict (eqList eqda)

where function eqList is defined as follows:
eqList :: EqD a→ [a]→ [a]→ Bool
eqList eqda [] [] = True
eqList eqda (x : xs) (x : xs) = (==) eqda x y && (==) (eqDList eqda) xs ys
eqList eqda _ _ = False

One interesting thing to notice in the above elaboration is the implementation of
function eqList. In order to compare the elements x and y it requires a dictionary
for Eq a, and the comparison of the sublists xs and ys requires a dictionary for
Eq [a]. The latter it constructs by calling the dictionary transformer eqDList,
effectively making the two definitions (eqDList and eqList) mutually recursive.

Finally, let us consider instances for classes with superclasses. For example,
consider the Ord instance for Bool:

instance Ord Bool where
(<) = ordBool

where ordBool is defined as follows (we assume False to be less-than True, since
it comes first in the definition of Bool):

ordBool :: Bool → Bool → Bool
ordBool False True = True
ordBool _ _ = False

116 BACKGROUND

Since the dictionary type for Ord needs to store all superclass dictionaries within
the newly constructed dictionary, the generated dictionary ordDBool takes the
following form:

ordDBool :: OrdD Bool
ordDBool = OrdDict eqDBool ordBool

In this simple case the required superclass dictionary (eqDBool) is a top-level
declaration, hence easy to retrieve. In the general case the construction of the
superclass dictionaries can require arbitrary many steps. We return to this issue
in Section 6.3.

Summary In summary, a class declaration with n superclass constraints and m
methods gives rise to (a) a datatype declaration with a single data constructor,
containing n + m fields (for both superclass constraints and methods), and
(b) n + m extraction functions (n functions for superclasses and m for the
methods). Similarly, an instance declaration with an instance context of size
n gives rise to a single term-level function of arity n, taking n dictionaries as
arguments and computing a dictionary as a result. This procedure is presented
in formal terms in the next chapter.

Chapter 6

The Basic System

We now present a formal specification of HM with type classes, sufficiently
expressive to encode a minimal version of Haskell. Simplified variants of this
system have appeared in the literature, but we present its complete specification
here to serve as the basis for our extensions in the forthcoming chapters
(Chapters 7, 8, and 9).

As we illustrated in Section 5.4.3, the dictionary-passing elaboration of type
classes requires the target language to provide support for algebraic data types
and pattern matching. Even though it has been shown that (strictly-positive)
data types can be encoded into System F (by means of the Böhm-Berarducci
encodings (Böhm and Berarducci, 1985)), in this work we take the standard
approach of extending System F with explicit support for data types and pattern
matching. Hence, this section is structured as follows: Section 6.1 extends the
definition of System F we provided in Section 5.2 with the additional constructs
(algebraic data types, case expressions, and let-bindings). The rest of the
chapter presents all formal aspects of type classes: The formalization of the
basic system is spread over Sections 6.2 (syntax), 6.3 (specification of typing
and elaboration), and 6.4 (type inference algorithm with elaboration). Finally,
Section 6.5 states the most relevant meta-theoretical properties of the system.

6.1 Extended System F

Extending System F with data types induces changes in its syntax, typing,
operational semantics, and meta-theoretical properties. We discuss each each of

117

118 THE BASIC SYSTEM

the changes below.

6.1.1 Syntax Extensions

Terms First, we extend the syntax of terms t to accommodate data
constructors, case expressions and local let-bindings:

t ::= . . . | K | case t1 of p → t2 | let x : υ = t1 in t2 term
p ::= K x pattern

We allow only simple patterns of the form K x, instead of nested patterns; case
expressions with nested patterns can be desugared into nested case expressions
with simple patterns (see for example the work of Maranget and Para (1994)).

Local let-bindings are not strictly necessary for our translation but since our
intention is to support a sufficiently expressive source language (see Section 6.2),
we avoid unnecessary desugaring by including let-bindings in our target language
as well.

Types Next, we need to extend types, to accommodate type constructors:

υ ::= a | ∀a. υ | T | υ1 υ2 type

Notice that function types are no longer special; they can be considered another
type constructor with arity 2:

(υ1 → υ2) ≡ ((→) υ1) υ2

Also, by adding type application as a syntactic form we allow the partial
application of type constructors (that is, to types of higher kinds). Many of the
interesting examples motivating our work in the next chapters use higher-kinded
types and it is desirable that they can be expressed within our system.

Declarations Finally, as we illustrated in Section 5.4.3, translating type classes
requires top-level declarations: data type declarations for type classes and
recursive let-bindings for class instances. We extend System F accordingly:1

decl ::= let x : υ = t | data T a = K1 υ1| . . . |Kn υn declaration
pgm ::= decl program

1Notice the difference between the bars: we use | for separating syntactic forms and | for
separating data constructor declarations.

EXTENDED SYSTEM F 119

6.1.2 Typing Extensions

Typing Environments Firstly, we extend typing contexts with bindings for
type constructors and data constructors. Since we elide kinds altogether, we
only keep track of defined type constructors but not their kind or arity (our
implementations of course do):

Γ ::= . . . | Γ,T | Γ,K : υ typing environment

All typing relations remain the same; we only need to add new rules for the
new forms and add new typing relations for the additional constructs (patterns,
declarations, and programs). We do so below.

Type Well-formedness Since we extended types with additional forms (type
constructors and type applications), we need to extend the well-formedness
relation to account for them. The relation still takes the form Γ T̀Y υ as in
Section 5.2. The additional rules are the following:

T ∈ Γ
Γ T̀Y T

TyCon
Γ T̀Y υ1 Γ T̀Y υ2

Γ T̀Y υ1 υ2
TyApp

Again, since we omit kind information, both rules just check the well-formedness
of the respective forms. Of course, our intention is to allow only well-kinded
types; we return to this issue in Section 6.1.4.

Term Typing Typing for expressions remains the same, we only add three
more rules, one for each of the new syntactic forms:

(K : υ) ∈ Γ
Γ T̀M K : υ

TmCon
Γ T̀M t1 : υ1 Γ P̀ p → t2 : υ1 → υ2

Γ T̀M case t1 of p → t2 : υ2
TmCase

x /∈ dom(Γ) Γ, x : υ1 T̀M t1 : υ1 Γ, x : υ1 T̀M t2 : υ2

Γ T̀M let x : υ1 = t1 in t2 : υ2
TmLet

Rule TmCon looks up the type of a data constructor in the typing environment
Γ. Rule TmCase handles case expressions. Once we check that the scrutinee
has type υ1 we check that all clauses are well-typed. This is captured in relation
Γ P̀ p → t : υ1 → υ2, which we discuss below. Rule TmLet handles recursive
let-bindings and is entirely straightforward.

120 THE BASIC SYSTEM

Pattern Typing Pattern typing is given by relation Γ P̀ p → t : υ1 → υ2, which
has a single rule:

x /∈ dom(Γ) (K : ∀a. υ → T a) ∈ Γ Γ, x : [υa/a]υ T̀M t : υ
Γ P̀ K x→ t : T υa → υ

TmPat

In short, under a typing environment Γ and a scrutinee type υ1, we ensure
that pattern p has type υ1 and right-hand side t has type υ2. For checking
the right-hand side t, we bring the pattern variables x into scope, with the
appropriate type.

Declaration Typing Finally, now our programs do not simply consist of a
term, but a list of declarations. We introduce relation Γ D̀ decl : Γ′, which
type-checks declarations. Given a typing environment Γ and a declaration decl,
the resulting environment Γ′ captures the typing environment extensions the
declaration introduces: for a top-level binding this amounts to the term variable
being bound and for a data type declaration to bindings for the type constructor
and data constructors:

x /∈ dom(Γ) Γ T̀Y υ Γ, x : υ T̀M t : υ
Γ D̀ let x : υ = t : [x : υ]

TopLet

a /∈ Γ Γ,T , a T̀Y υi

Γ D̀ data T a = K1 υ1| . . . |Kn υn : [T ,Ki : ∀a. υi → T a]
TopData

Rule TopLet checks recursive top-level let-bindings (x is brought in scope
for checking t). Rule TopData checks data type declarations: the universally
quantified constraints a are brought in scope before checking the argument
types of each data constructor. The typing environment is then extended with
bindings for type and data constructors.

Though not made explicit in the rule, we assume that every type constructor
and data constructor is unique.

6.1.3 Operational Semantics Extensions

Finally, the syntax extensions induce a change in the operational semantics,
which now needs to account for the reduction of case expressions. Relation
t1 −→ t2 is extended with the two following rules:

t1 −→ t′1
case t1 of p → t2 −→ case t′1 of p → t2

(Ki x→ t) ∈ p → t2

case Ki t of p → t2 −→ [t/x]t

SYNTAX 121

The first is a congruence rule, reducing the scrutinee of a case expression. The
second rule handles cases where the scrutinee is in weak head normal form
(WHNF). In this case, the first clause that matches is selected and the pattern
variables x are substituted for the actual arguments t. Our notation is a bit
sloppy; the delicacies of the matching order in lazy pattern matching are the
subject of Part I and we do not consider them here.

6.1.4 Meta-theory Changes

We conjecture that the meta-theoretical properties of System F we presented
in Section 5.2.2 are preserved under the aforementioned extensions, with the
exception of strong normalization.2 After all, this system is a subset of System
FC (Sulzmann et al., 2007a), for which the aforementioned properties are
proven. Since the language now includes both (inductive) algebraic data types
and general recursion (recursive let-bindings), terms are no longer strongly
normalizing. Yet, this is no concern: most general-purpose languages sacrifice
strong normalization for additional expressive power. As long as our target
language is type safe, we can ensure that a well-typed elaboration has well-
specified semantics.

A Note on Kinds Though we omitted all mention of kinds to avoid clutter, it
is imperative (and our intention) that the system ensures the well-kindness of
types. We do not want to accept non-sensical types such as (Int Int) or terms
such as (λ(x : Maybe). x). The remainder of the thesis also omits kinds (yet
assuming that types are well-kinded) for the sake of brevity; we refer the reader
to the work of Pierce (2002, Chapter 29) for more details on kinding, as well as
the work of Jones (1993) on how to infer kinds in the presence of type classes.

6.2 Syntax

The syntax of the basic system is presented in Figure 6.1. In addition to the
existing symbol classes (term variables x, y, z and type variables a, b, c), we
introduce dictionary variables d and class constructors TC. Dictionary variables
are simply System F term variables but, by convention, we use x, y, z for
any kind of term variable and d only for dictionary variables. A program
pgm consists of a list of declarations decl, which can be class declarations cls,
instance declarations ins, or value bindings val. The syntax of class declarations,

2Type safety requires all case expressions to be exhaustive, as we illustrated in Section 2.

122 THE BASIC SYSTEM

Figure 6.1 Basic System: Syntax

d ::= 〈dictionary variable name〉
TC ::= 〈class name〉

pgm ::= decl program
decl ::= cls | ins | val declaration

cls ::= class ∀a. C ⇒ TC a where { f :: σ } class declaration
ins ::= instance ∀b. C ⇒ TC τ where { f = e } class instance
val ::= x = e value binding

e ::= x | λx. e | e1 e2 | let x = e1 in e2 term

τ ::= a | τ1 → τ2 monotype
ρ ::= τ | Q ⇒ ρ qualified type
σ ::= ρ | ∀a. σ type scheme

S ::= ∀a. C ⇒ π constraint scheme
C ::= • | C ,Q constraint set
Q ::= π constraint
π ::= TC τ class constraint

Γ ::= • | Γ, a | Γ, x : σ typing environment
P ::= 〈AS ,AI , CL〉 program theory

instances, and value bindings is standard. In order to reduce the notational
burden, we omit again all mention of kinds and assume that each class has
exactly one method. Additionally, we explicitly mark the type variables a/b
that are bound in the class/instance head and context.

Expressions comprise a λ-calculus, extended with recursive let bindings.

Types σ are a conservative extension of HM types (see Section 5.3.2): we
interpose qualified types ρ between monotypes τ and σ. This is standard
practice for HM extended with qualified types (Jones, 1992).

Next, the syntax of constraints is straightforward: constraint schemes S capture
implications generated by class and instance declarations. Sets of constraints
(like superclass constraints or instance contexts) are denoted by C and a single
constraint is denoted by Q. For the basic system the syntax of constraints Q

TYPING AND ELABORATION INTO SYSTEM F 123

coincides with class constraints π, but that is not always the case. Indeed, we
lift this restriction in the upcoming chapters.

Finally, Figure 6.1 presents the syntax of typing environments Γ and program
theories P. Typing environments are standard. The program theory P contains
all constraint schemes generated by class and instance declarations, and gets
extended with local constraints, when going under a qualified type.

We explicitly represent the program theory P as a triple of three constraint sets:
the superclass axioms AS , the instance axioms AI and local axioms CL. We
use the notation P,L d : π to denote that we extend the local component of the
triple, and similar notation for the other components.

Axiom sets A and local axioms C—along with other entities that we use a
calligraphic font for—capture the evidence-annotated counterparts of the non-
calligraphic variants:

A ::= • | A,S variable-annotated constraint scheme set
S ::= d : S variable-annotated constraint scheme
C ::= • | C, d : Q variable-annotated constraint set
Q ::= d : Q variable-annotated constraint
Π ::= d : π variable-annotated class constraint

This allows us to present typing and elaboration succinctly in Section 6.3 below.

In earlier type class formalizations the three separate kinds of axioms that
constitute the program theory P are typically conflated into a single constraint
set. However, it is convenient to distinguish them for accurately stating the
different restrictions imposed on them.

Moreover, the specification we present in Section 6.3 treats P as a constraint
set, while the inference algorithm of Section 6.4 uses each subset differently;
such a formalization is closer to actual implementations of type classes.

6.3 Typing and Elaboration into System F

Type Well-formedness and Elaboration Well-formedness and elaboration of
types for the basic system extend the respective relation for HM (Figure 5.3,
relation Γ T̀Y σ υ). Since our type language now includes qualified types ρ,
we simply add a new rule to handle types of this form:

Γ C̀T Q υ1 Γ T̀Y ρ υ2

Γ T̀Y Q ⇒ ρ υ1 → υ2
TyQual

124 THE BASIC SYSTEM

As we discussed in Section 5.4.3, class constraints in qualified types are
interpreted as simple types in the target language (System F). Hence, the
source qualification arrow “⇒” corresponds to a simple function arrow “→” in
System F: a wanted class constraint is satisfied when we provide a term-level
proof for it (a dictionary).

The well-formedness and elaboration of the constraint Q is captured in relation
Γ C̀T Q υ, given by a single rule:

TC defined Γ T̀Y τ υ

Γ C̀T TC τ TTC υ
ClsCt

In essence, the class constructor TC is elaborated into its corresponding type
constructor TTC and the class parameter is elaborated into the type constructor’s
type parameter. The exact definition of type TTC is generated when checking
the corresponding class declaration (see Figure 6.2 below).

Term Typing and Elaboration Next, the extension of HM with type classes
conservatively extends term typing. Similarly to earlier work on type class
elaboration (Hall et al., 1996), the program theory P becomes part of the term
typing relation (the need for this change is illustrated below). Hence, term
typing for the basic system takes the form P; Γ T̀M e : σ t.

All rules from Figure 5.3 are parametric over the additional parameter P, so we
only present the additional rules here. Similarly to Rules (∀I) and (∀E) that
capture type abstraction introduction and elimination, Rules (⇒I) and (⇒E)
capture constraint abstraction introduction and elimination, respectively:

Γ C̀T Q υ d /∈ dom(Γ) ∪ dom(P) P,L d : Q; Γ T̀M e : ρ t

P; Γ T̀M e : Q ⇒ ρ λ(d : υ). t
(⇒I)

P; Γ T̀M e : Q ⇒ ρ t1 P; Γ |= t2 : Q
P; Γ T̀M e : ρ t1 t2

(⇒E)

Rule (⇒I) elaborates a term with a qualified type into a λ-abstraction; the type
qualification directly corresponds to a dictionary abstraction, a proof obligation
that needs to be satisfied at call-sites.

Conversely, Rule (⇒ E) eliminates an obligation, by providing a proof
(dictionary) t2 of the required class constraint. Since constraint abstraction is
elaborated into a λ-abstraction, constraint elimination corresponds to term-level
application. Constraint entailment with dictionary construction is captured by
relation P; Γ |= t : Q, which we elaborate on below.

TYPING AND ELABORATION INTO SYSTEM F 125

Finally, though not related to type classes, the basic system includes local
let-bindings, handled by Rule TmLet:

x /∈ dom(Γ)
Γ T̀Y τ υ P; Γ, x : τ T̀M e1 : τ t1 P; Γ, x : τ T̀M e2 : σ t2

P; Γ T̀M let x = e1 in e2 : σ let x : υ = t1 in t2
TmLet

In contrast to most HM-based systems in the literature (e.g., Sulzmann et al.
(2007b)), let-bindings in our system are not generalized (that is, let-bound
variables cannot have a polymorphic type). Rule TmLet internalizes this
restriction by assigning x and e1 monotype τ .

A Note on Let-generalization As Vytiniotis et al. (2010) have shown, local
let-generalization disproportionally complicates type inference for its expressive
power. What’s more, let-generalization renders existing inference algorithms
incomplete (with respect to their specification) in the presence of type equalities
and local assumptions, as introduced by features like type families (Chakravarty
et al., 2005a,b; Schrijvers et al., 2007, 2008), functional dependencies (Jones,
2000), and GADTs (Peyton Jones et al., 2006). Moreover, Haskell users rarely
rely on let-generalization without explicit annotations (Vytiniotis et al., 2010,
Section 4).

Indeed, GHC does not perform let-generalization in cases where at least one
of the aforementioned features is used (Vytiniotis et al., 2011). For the same
reasons, we do the same here: neither the basic system presented in this chapter
or the forthcoming extensions (presented in Chapters 7, 8, and 9) consider
let-generalization.3 Nevertheless, we generalize top-level let-bindings, thus
preserving the system’s expressive power without complicating our presentation.

Constraint Entailment with Dictionary Construction A notion non-existent
in the HM system is that of constraint entailment. Calling an overloaded
function gives rise to wanted constraints, which the system should be able to
automatically resolve, using given constraints. This procedure is captured by
relation P; Γ |= t : Q. In layman’s terms, under given constraints P and typing
environment Γ, System F term t is a proof for constraint Q. The relation is
given by a single rule:

(d : ∀a. C ⇒ TC τ) ∈ P θ = [τa/a] P; Γ |= t : θ(C)
P; Γ |= d τa t : TC θ(τ)

Ent

3Indeed, if we considered let-generalization we would face the same issues as Vytiniotis et al.
(2010) in Chapter 8, where we develop a system with type classes and functional dependencies.

126 THE BASIC SYSTEM

Figure 6.2 Basic System: Declaration Typing with Elaboration

Γ C̀LS cls : PS ; Γc decl Class Declaration Typing

Γ, a C̀T C υ Γ, a T̀Y σ υ
PS = [∀Q ∈ C : ∀a. TC a⇒ Q] Γc = [f : ∀a. TC a⇒ σ]

decl = [data TTC a = KTC υ υ
, let di : ∀a. TTC a→ υi = Λa. λ(d : TTC a). projiTC(d)
, let f : ∀a. TTC a→ υ = Λa. λ(d : TTC a). projn+1

TC (d)]

Γ C̀LS class ∀a. C ⇒ TC a where { f :: σ } : PS ; Γc decl
Cls

P; Γ ÌNS ins : Pi decl Class Instance Typing

class ∀a. (Q1, . . . ,Qn)⇒ TC a where { f :: σ }
ΓI = Γ, b PI = P,L d : Q

m

ΓI C̀T Qm
 υm ΓI T̀Y τ υ S = ∀b. Qm ⇒ TC τ

PI ; ΓI |= t
n : [τ/a]Qn

PI ,I d : S ; ΓI T̀M e : [τ/a]σ t

decl = [let d : ∀b. υmi → TTC υ = Λb. λ(d : υm). KTC υ t
n
t]

P; Γ ÌNS instance ∀b. Qm ⇒ TC τ where { f = e } : [d : S] decl
Ins

P; Γ V̀AL val : Γ′ decl Value Binding Typing

x /∈ dom(Γ) P; Γ, x : σ T̀M e : σ t Γ T̀Y σ υ

P; Γ V̀AL x = e : [x : σ] let x : υ = t
Val

This method of entailment is known as Selective Linear Definite (SLD) clause
resolution (Kowalski, 1974) or backwards chaining, and is the standard sound
and complete resolution for Horn clauses (which, in our setting, are represented
by constraint schemes S).

Essentially, Rule Ent matches the head of a given horn clause in the program
theory P with the goal, and recursively entails the premises of the clause.
Dictionary construction behaves accordingly: the selected dictionary transformer
d is instantiated appropriately (applied to types τa), and then applied to the
proofs for the premises t.

Declaration Typing with Elaboration The specification of typing with
elaboration of declarations is presented in Figure 6.2. To aid readability, we

TYPE INFERENCE WITH ELABORATION INTO SYSTEM F 127

highlight all aspects of the rules that are concerned with elaboration.

Judgment Γ C̀LS cls : PS ; Γc decl handles class declarations and is given by
Rule Cls. Apart from checking the well-scopedness of the class context and the
method signature, it also gives rise to typing environment extension Γc which
captures the method type, and program theory extension PS which captures
the superclass axioms we discussed in Section 5.4.2. All this information is also
captured in the generated declarations decl, which includes the dictionary type
declaration TTC, the superclass axioms dn, and the method f . We use projiTC(d)
to denote the extraction of the i-th field of a class dictionary d of type TTC a:

projiTC(d) ≡ case d of { KTC x→ xi }

Judgment P; Γ ÌNS ins : Pi decl handles instance declarations and is
also given by a single rule. Rule Ins is for the most part straightforward:
we ensure that all objects are well-scoped, and additionally check (a) the
entailment of superclass constraints via premise PI ; ΓI |= t

n : [τ/a]Qn,
and (b) the method implementation against its expected type via premise
PI ,I d : S ; ΓI T̀M e : [τ/a]σ t. Last, the program theory extension induced by
the instance (according to the logical interpretation we gave in Section 5.4.2) is
captured in the scheme S , which is also elaborated into System F dictionary
transformer d.

Rule Val handles top-level value bindings and is entirely straightforward.

Program Typing with Elaboration Finally, program typing combines all the
above, and takes the form P̀GM pgm : P; Γ decl. The judgment can be read as
“program pgm introduces typing environment Γ, and program theory P, and it
gets elaborated into System F declarations decl. The definition of the judgment
is straightforward so we omit it from our main presentation. It can be found in
Appendix A.

6.4 Type Inference with Elaboration into System F

Similarly to plain HM, type inference for the basic system proceeds by first
generating type constraints from the program text (constraint generation) and
then solving these constraints independently of the program text (constraint
solving). Yet, constraint generation for HM gives rise to wanted type equalities
E , whereas the basic system needs to account for both type equalities E and
sets of class constraints C. Consequently, constraint solving for the basic system
does not only result in a type substitution θ but also in an evidence substitution

128 THE BASIC SYSTEM

Figure 6.3 Basic System: Term Elaboration and Constraint Generation

Γ T̀M e : τ t | C; E Constraint Generation

b, d fresh (x : ∀a. Q ⇒ τ) ∈ Γ θ = [b/a]

Γ T̀M x : θ(τ) x b d | (d : θ(Q)); •
TmVar

a fresh Γ, x : a T̀M e1 : τ1 t1 | C1; E1
Γ, x : τ1 T̀M e2 : τ2 t2 | C2; E2 E = E1,E2, a ∼ τ1

Γ T̀M let x = e1 in e2 : τ2 let x : elabTY(τ1) = t1 in t2 | (C1, C2); E
TmLet

a fresh Γ, x : a T̀M e : τ t | C; E
Γ T̀M λx. e : a→ τ λ(x : a). t | C; E

TmAbs

a fresh Γ T̀M e1 : τ1 t1 | C1; E1 Γ T̀M e2 : τ2 t2 | C2; E2

Γ T̀M e1 e2 : a t1 t2 | (C1, C2); (E1,E2, τ1 ∼ τ2 → a)
TmApp

η:

η ::= • | η · [t/d] evidence substitution

Just as a type substitution θ maps type variables to monotypes, an evidence
substitution η maps dictionary variables d to System F terms t (dictionaries).
The remainder of Section 6.4 presents the complete type inference algorithm
(constraint generation and solving) for the basic system.

Constraint Generation Constraint generation with elaboration for terms takes
the form Γ T̀M e : τ t | C ; E and is presented in Figure 6.3. The judgment
conservatively extends the corresponding one for HM, by generating wanted
class constraints C, alongside type equalities E . Since the differences are minimal,
we highlight the parts of the rules that are specific to type classes.

Rule TmVar handles term variables. The polymorphic type ∀a. Q ⇒ τ of a
term variable x is instantiated with fresh unification variables b, and constraints
Q are introduced as wanted constraints, instantiated likewise. In the elaborated
term instantiation becomes explicit via type application. Similarly, the source-
level elimination of constraints Q amounts to term-level application in System
F. Arguments d capture the yet-unknown dictionaries, evidence for the wanted
constraints Q.

TYPE INFERENCE WITH ELABORATION INTO SYSTEM F 129

Rule TmLet handles (possibly recursive) monomorphic let-bindings. After
assigning a fresh unification variable a to the term variable x, we infer types
for both e1 and e2. Since this system does not perform let-generalization,
Rule TmLet does not make a distinction between constraints generated by e1
or e2; they are both part of the result. Finally, we record that the (monomorphic)
type of x is equal to the type of the term it is bound to: a ∼ τ1.

Rule TmAbs is straightforward: the abstraction itself imposes no additional
restrictions on the types, so the wanted constraints for the abstraction coincide
with those for the body. Rule TmApp combines the wanted class constraints
from both subterms, just as it does for wanted type equalities.

Elaboration of Types and Constraints Elaboration of types is performed by
function elabTY(σ) = υ, given by the following clauses:

elabTY(a) = a
elabTY(τ1 → τ2) = elabTY(τ1)→ elabTY(τ2)
elabTY(Q ⇒ ρ) = elabCT(Q)→ elabTY(ρ)
elabTY(∀a. σ) = ∀a. elabTY(σ)

The first, second, and fourth clauses are straightforward and implement the
identity transformation between HM and System F types. The only case of
interest is the third clause, which handles qualified types. As we informally
discussed in Section 5.4.3, a qualified type in the source language corresponds to
a simple arrow type in System F, from the dictionary type the class constraint
represents to the elaboration of the right-hand side of the type.

The translation of a constraint to its System F counterpart is performed by
function elabCT(Q) = υ, given by the following clause:

elabCT(TC τ) = TTC elabTY(τ)

In essence, the class constructor TC is translated to the corresponding System
F type constructor TTC and the class parameter to a type parameter for TTC.
As one might expect, each function implements the elaboration-part of the
corresponding well-formedness relation (relations Γ T̀Y σ υ and Γ C̀T Q υ,
respectively).

Constraint Solving The type class and equality constraints derived from terms
are solved with the following two algorithms.

Solving Equality Constraints. We solve a set of equality constraints E by
means of unification. Nevertheless, in contrast to plain HM, type classes

130 THE BASIC SYSTEM

Figure 6.4 Hindley-Damas-Milner Unification Algorithm
unify(a; E) = θ⊥ Type Unification Algorithm

unify(a; •) = •
unify(a; E , b ∼ b) = unify(a; E)
unify(a; E , b ∼ τ) = unify(a; θ(E)) · θ

where b /∈ a ∧ b /∈ fv(τ) ∧ θ = [τ/b]
unify(a; E , τ ∼ b) = unify(a; θ(E)) · θ

where b /∈ a ∧ b /∈ fv(τ) ∧ θ = [τ/b]
unify(a; E , (τ1 → τ2) ∼ (τ3 → τ4)) = unify(a; E , τ1 ∼ τ3, τ2 ∼ τ4)

Figure 6.5 Algorithmic Constraint Entailment with Dictionary Construction

a; A |= Q C; η

(dI : ∀b. Qn ⇒ TC τ2) ∈ A unify(a; τ1 ∼ τ2) = θ d
n fresh

a; A |= d : TC τ1 di : θ(Qi); [dI θ(b) d
n
/d]

Ent

a; A |= C1 C2; η

@Q ∈ C : a; A |= Q C′; η
a; A |= C C; •

Stop

a; A |= Q C1; η1 a; A |= C, C1 C2; η2

a; A |= C,Q C2; (η2 · η1)
Step

introduce explicit type annotations through method signatures. Hence,
function unify needs to be extended to account for signatures. This
is achieved by passing an additional argument: a set of “untouchable”
type variables a. The untouchable type variables a originate from type
signatures; all other type variables are unification variables.
The updated function has signature unify(a; E) = θ⊥ and is presented
in Figure 6.4. For clarity, we highlight the differences with respect to
the unification algorithm we presented in Figure 5.4. The usefulness of
untouchable variables manifests itself in the third and fourth clauses, where
unification is performed: unification is now allowed only if the variable
to be unified is not an element of the “untouchable set”. Essentially,

TYPE INFERENCE WITH ELABORATION INTO SYSTEM F 131

untouchable type variables are treated by the algorithm as skolem
constants and therefore cannot be substituted (they can be unified with
themselves though).

Solving Type Class Constraints. Figure 6.5 defines the judgment for
solving type class constraints; it takes the form a; A |= C1 C2; η. Given
a set of untouchable type variables a and an axiom set A, it (exhaustively)
replaces a set of constraints C1 with a set of simpler, residual constraints C2.
This simplification it achieves via the auxiliary judgment a; A |= Q C; η,
also presented in Figure 6.5. This form differs from the specification in
Section 6.3 (relation P; Γ |= t : Q) in four ways.
First, we allow constraints to be partially entailed, which in turn allows
us to perform simplification (Jones, 1995c) of top-level signatures. This
is standard practice in Haskell when inferring types. For instance, when
inferring the signature for

f x = [x] == [x]

Haskell simplifies the derived constraint Eq [a] to Eq a, yielding the
signature ∀a. Eq a⇒ a→ Bool.
Second, constraint simplification, as performed by the auxiliary judgment
a; A |= Q C; η, does not suffer from the ambiguity the specification
does: instead of “guessing” a type substitution θ, we compute a unifier
between the given and the wanted constraint by means of unification.
Third, evidence construction is not performed directly, by means of
creating a dictionary. Instead, a dictionary substitution η is created,
which maps (wanted) dictionary variables to dictionaries. The image of
the mapping can refer to both dictionary variables bound by the program
theory P (given), and residual (wanted) dictionary variables. This strategy
is analogous to the unification algorithm, which solves type equalities
by creating a type substitution for instantiating the yet-unknown types
(unification variables).
Finally, in contrast to the specification, algorithmic constraint entailment
does not take the complete program theory, but an axiom set. We
make this design choice due to superclass constraint schemes: during
simplification we do not want to replace a wanted constraint (Eq a) with a
more complex (Ord a). We elaborate on the transition from the program
theory P to an equally expressive axiom set A—which does not contain
superclass constraint schemes—next.

Transitive Closure of the Superclass Relation Superclass axioms often
overlap with instance axioms. Consider for example the following two axioms,

132 THE BASIC SYSTEM

the first obtained by the Eq instance for lists and the second obtained by the
Ord class declaration:

∀a. Eq a⇒ Eq [a] (a)
∀b. Ord b⇒ Eq b (b)

This is a problem for type inference, since the algorithm of Figure 6.5 would
have to make a choice when faced with for example with constraint Eq [c].
Both axioms (a) and (b) match but to completely entail constraint Eq [c] we
would require Eq c if we were to choose the former and Ord [c] if we were to
choose the latter. In order to avoid this source of non-determinism, several
implementations of type classes (and notably GHC) treat superclass constraints
differently.

In essence, we can pre-compute the transitive closure of the superclass relation
on a set of given constraints and omit superclass axioms altogether henceforth.
This procedure should also be reflected in the elaborated terms. To this end,
we introduce dictionary contexts E, that is, nested let-bindings with a hole:

E ::= � | let d : υ = t in E dictionary context

Hence, during entailment we can replace the program theory P with an axiom
set A (which does not contain any superclass axioms) and a dictionary context
E. This procedure we denote as ScClosure(a,P) = (A,E):

ScClosure(a, 〈AS ,AI , CL〉) = ((C′L,AI , CL),E)
where (C′L,E) = mponens∗(a,AS , CL)

Function mponens∗ computes the transitive closure of the following (single-step)
relation:

mponens(a,A, d : TC τ1)
= concat { (d2 : θ(Q),E) | (d1 : ∀b. TC τ1 ⇒ Q) ∈ A

, unify(a; τ1 ∼ τ2) = θ, d2 fresh
, E = let d2 : elabCT(θ(Q)) = d1 θ(b) d in � }

In layman’s terms, function mponens(a,A,Π) = (C,E) tries to match the left-
hand side of every available constraint scheme in A with the given constraint.
If matching (via unification) is successful, modus ponens is used to derive the
right-hand side. This procedure is also reflected in the dictionary context E,
which captures a scope where the derived dictionaries are available.

For example, if we have

a = m
A = { d1 : ∀n. Monad n⇒ Applicative n

, d2 : ∀k. Applicative k ⇒ Functor k }
Π = d3 : Monad m

TYPE INFERENCE WITH ELABORATION INTO SYSTEM F 133

Figure 6.6 Declaration Elaboration (Selected Rules)

P; Γ ÌNS ins : P ′ decl Class Instance Typing

class ∀a. (Q1, . . . ,Qn)⇒ TC a where { f :: σ }
ΓI = Γ, b PI = P,L d : Q

m
d, d

n
, d
m fresh ΓI C̀T Qm

 υm

ΓI T̀Y τ υ S = ∀b. Qm ⇒ TC τ ScClosure(b,PI) = (A,E)
b; A |= d : Q

n
 •; η b; PI ,I d : S ; ΓI T̀M e : [τ/a]σ t

decl = [let d : ∀b. υmi → TTC υ = Λb. λ(d : υm). KTC υ E[η(dn)] t]
P; Γ ÌNS instance ∀b. Qm ⇒ TC τ where { f = e } : [d : S] decl

Ins

P; Γ V̀AL val : Γ′ decl Value Binding Typing

x /∈ dom(Γ) b fresh Γ, x : b T̀M e : τ t | C; E
unify(•; E , b ∼ τ) = θ a = fv(θ(C)) ∪ fv(θ(τ))
a; AI , CL |= θ(C) d : Q; η σ = ∀a. Q ⇒ θ(τ)

〈AS ,AI , CL〉; Γ V̀AL x = e : [x : σ] let x : elabTY(σ) = Λa. λ(d : Q). E[η(θ(t))]
Val

then mponens∗(a,A,Π) results in the following:

C = { d4 : Applicative m, d5 : Functor m }
E = let d4 : TApplicative m = d1 m d3 in

let d5 : TFunctor m = d2 m d4 in �

In plain type inference, superclass are never used; the above procedure is required
in type checking. This is the case for method implementations, explicitly-
annotated terms, and the entailment of superclass constraints in class instances.

This is better illustrated in declaration inference, which we discuss next.

Top-level Declaration Inference with Elaboration Type inference with
elaboration into System F for top-level declarations is presented in Figure 6.6.
Since type inference with elaboration for class declarations is identical to the
specification of Figure 6.2, we only present the judgments for class instances
and top-level bindings. We elaborate on both below.

Instance Inference with Elaboration Type inference for instance declarations
takes the form P; Γ ÌNS ins : P ′ decl and is given by Rule Ins. For the most

134 THE BASIC SYSTEM

Figure 6.7 Subsumption Rule
a; P; Γ T̀M e : σ t Explicitly-annotated Term Typing

Γ T̀M e : τ1 t | Ce; Ee d fresh θ = unify(a, b; Ee, τ1 ∼ τ2)
ScClosure(a, (P,L d : Q)) = (A,E) a, b; A |= θ(Ce) •; η

a; P; Γ T̀M e : (∀b. Q ⇒ τ2) Λb. λ(d : elabCT(Q)). E[η(θ(t))]
(�)

part it is identical to the corresponding rule of Figure 6.2. The most notable
differences are concentrated around superclass entailment and type checking of
the method implementation.

For the entailment of the superclass constraints we pre-compute the transitive
closure of the superclass relation, and then (a) we generate fresh dictionary
variables dn, to capture the yet-unknown superclass dictionaries, and (b) we
incrementally entail the superclass constraints (requiring no residual constraints),
obtaining an evidence substitution η. η maps dictionary variables dn to
generated dictionaries; the complete witness for the i-th superclass dictionary
takes the form E[η(θ(di))].

Method implementations have their type imposed by the method signature in
the class declaration. Hence, we need to check rather than infer their type.

This operation is expressed succinctly by relation a; P; Γ T̀M e : σ t, presented
in Figure 6.7. Essentially, it ensures that the inferred type for e subsumes
the expected type σ. Similarly to HM (see Theorem 8), a type σ1 is said to
subsume type σ2 if any expression that can be assigned type σ1 can also be
assigned type σ2. In the presence of qualified types, this also requires checking
that the constraints of one type can entail the constraints of the other:

P; Γ |= [τ/b]Q2 τ1 = [τ/b]τ2

P; Γ |= (∀a. Q1 ⇒ τ1) � (∀b. Q2 ⇒ τ2)

Rule (�) performs type inference and type subsumption checking simultaneously:
First, it infers a monotype τ1 for expression e, as well as wanted constraints
Ce and type equalities Ee. Type equalities Ee should have a unifier and the
inferred type τ1 should also be unifiable with the expected type τ2. Finally, the
given constraints Q should completely entail the wanted constraints Ce. For
constraint entailment, we (again) pre-populate the given constraints with the
transitive closure of the superclass axioms.

META-THEORETICAL PROPERTIES 135

Value Binding Inference with Elaboration Finally, type inference for top-
level bindings is given by Rule Val, also in Figure 6.6. In short, the rule
performs plain type-inference, simplification (Jones, 1995c) and generalization
of a top-level binding.

First, we infer a monotype τ for expression e, as well as class constraints
C and equality constraints E . If unification is successful, we obtain a type
substitution θ, which we then apply to monotype τ and wanted class constraints
C . We then simplify the wanted constraints via constraint entailment to a set
of simpler constraints Q; since there are no local constraints, superclass axioms
are ignored. For simplicity, we do not utilize interaction rules (e.g., we do not
simplify the constraints {Eq a,Ord a} to {Ord a}), but it is straightforward to
do so. Finally, type variables a that have not been unified are generalized. All
the above reasoning is directly reflected in the elaboration of the declaration,
which we highlight to aid readability.

Type-Annotated Value Binding Inference with Elaboration Though the
syntax of Figure 6.1 does not allow explicitly-annotated top-level bindings, it is
instructive to consider such an extension. Such a declaration is straightforward
to check:

•; P; Γ, x : σ T̀M e : σ t

P; Γ V̀AL let x : σ = e : [x : σ] let x : elabTY(σ) = t
ValSig

In case the expression is explicitly annotated, type inference directly corresponds
to an inference-and-subsumption-check, as given by judgment in Figure 6.7
above.

Program Typing with Elaboration Program typing with elaboration is
identical to its specification and is thus omitted.

6.5 Meta-theoretical Properties

In order to ensure well-specified semantics for type classes, it is common to
impose several external restrictions on their usage. Under these conditions, we
conjecture that all properties that hold for the HM system (see Section 5.3.3)
can be proven. Hence, we discuss here only the two properties that are more
challenging in the presence of type classes: termination and coherence of
elaboration.

136 THE BASIC SYSTEM

Termination of Type Inference First, for decidable type inference it is required
that type inference terminates on all inputs. This property is ensured under
the Termination Conditions:

(a) The superclass relation forms a directed acyclic graph (DAG).

(b) In each class instance (instance ∀b. C ⇒ TC τ):

• no variable has more occurrences in a type class constraint in the
instance context C than the head (TC τ), and

• each class constraint in the instance context C has fewer constructors
and variables (taken together, counting repetitions) than the head
(TC τ).

The first restriction ensures that the computation of the transitive closure of the
superclass relation (as performed by function ScClosure(a,P)) is terminating.

The second restriction, borrowed from the Paterson Conditions (Sulzmann et al.,
2007b, Def. 11), ensures that instance contexts are decreasing, so that class
resolution is also terminating.

By introducing some additional notation, we can formalize Condition (b) on
constraint schemes derived by instance declarations as follows:

‖Qi‖ < ‖Q‖ ∀a ∈ a : occa(Qi) ≤ occa(Q)
term(∀a. (Q1, . . . ,Qn)⇒ Q)

where function ‖·‖ computes the size of a constraint and occa(·) computes the
number of occurrences of variable a in a constraint. The size (‖τ‖ = N) and
the number of occurrences of a in a monotype (occa(τ) = N) are given by the
following functions (and are straightforwardly generalized to constraints):

‖a‖ = 1
‖τ1 → τ2‖ = 1 + ‖τ1‖+ ‖τ2‖

occa(b) =
{

1 , if a = b
0 , if a 6= b

occa(τ1 → τ2) = occa(τ1) + occa(τ2)

Coherence Conditions Coherence—which means that every different valid
type derivation for a program leads to a resulting program that has the same
dynamic semantics—is ensured if we restrict ourselves to non-overlapping
instances and non-ambiguous types:

Definition 3 (Non-overlapping Instances). Any two instance heads (TC τ1) and
(TC τ2) for the same class should not overlap (@θ. θ(τ1) = θ(τ2)).

SCIENTIFIC OUTPUT 137

The key idea behind this requirement is that computational content can only
originate from class instances; if no two instances overlap, multiple derivations
may exist but their semantics have to be the same.

Definition 4 (Non-Ambiguous Types and Schemes). A well-formed type σ =
∀a. C ⇒ τ is unambiguous (denoted by unamb(σ)) iff fv(C) ⊆ fv(τ). Similarly,
a well-formed constraint scheme S = ∀a. C ⇒ π is unambiguous (denoted by
unamb(S)) iff fv(C) ⊆ fv(π).

Essentially, Haskell ’98 requires that all quantified type variables in a qualified
type or a constraint scheme appear in the head. Thus, the non-ambiguity
requirement ensures that the inference algorithm does not guess any polymorphic
instantiations, since different choices lead to different proofs. Consider the
following instances:

instance C Char where { . . . }
instance C Bool where { . . . }
instance C a⇒ D Int where { . . . }

The third instance gives rise to the axiom ∀a. C a⇒ D Int. When resolving
D Int with this axiom we can choose a to be either Char or Bool and thus
select a different C instance.

A similar issue arises with ambiguous type signatures. Consider the folklore
read/show example:

h :: (Read a,Show a)⇒ String → String
h x = show (read x)

Whether the signature for h is provided by the programmer or inferred by the
inference algorithm is irrelevant; unless a concrete type for (read x) is explicitly
specified, h is ambiguous (a can be chosen to be Int, Bool, and so on).

6.6 Scientific Output

In this chapter we have presented a formalization of type classes, including
a specification of typing and elaboration, as well as a type inference with
elaboration algorithm. The main contribution of this chapter is the formalization
of superclasses, an important—yet often neglected—aspect of type classes. We
believe that this system is a great candidate for proving meta-theoretical
properties of type classes, in a way that also reflects their implementations. The
remainder of Part II develops three type class extensions, building upon the
specification of this system and referring to this chapter for all relevant notions.

Chapter 7

Quantified Constraints

In this chapter we present the first of our extensions to type classes: Quantified
Class Constraints.

The chapter is structured as follows: Section 7.1 motivates the development of
this heavily requested feature. Through a series of examples, we present the
expected semantics of quantified constraints, as well the benefits a programmer
can expect from their use. Section 7.2 presents the extensions the feature
induces to the declarative specification of the basic system we presented in
Section 6.3. Section 7.3 presents the extensions to the type inference and
elaboration algorithm, again with respect to the corresponding algorithm for the
basic system (Section 6.4). Section 7.4 discusses the meta-theoretical properties
of the extended system, and especially the conditions we require in order to
ensure the termination of the type inference algorithm. Section 7.5 discusses
related work and encodings of quantified constraints in the literature. Finally,
Section 7.6 concludes and summarizes the scientific output of this work.

7.1 Motivation

7.1.1 A History of Quantified Constraints

Ever since type classes were introduced in Haskell (Wadler and Blott, 1989), they
have been the subject of numerous extensions that increase their expressive power
and enable new applications. Several of these implemented extensions were
inspired by the analogy between type classes and Horn clauses (see Section 5.4.2).

139

140 QUANTIFIED CONSTRAINTS

Yet, Horn clauses have their limitations. As a small side-product of their work
on derivable type classes, Hinze and Peyton Jones (2000) have proposed to
raise the expressive power of type classes to essentially the universal fragment
of Hereditary Harrop logic (Harrop, 1956) with what they call quantified class
constraints. Their motivation was to deal with higher-kinded types which seemed
to require instance declarations that were impossible to express in the type-class
system of Haskell at that time.

Unfortunately, Hinze and Peyton Jones never did elaborate on quantified class
constraints. Later, Lämmel and Peyton Jones (2003) found a workaround for
the particular problem of the derivable type classes work that did not involve
quantified class constraints. Nevertheless the idea of quantified class constraints
has whet the appetite of many researchers and developers. GHC ticket #28931,
requesting for quantified class constraints, was opened in 2008 and is still open
today. Commenting on this ticket in 2009, Peyton Jones states that “their lack
is clearly a wart, and one that may become more pressing”, yet clarifies in 2014
that “[t]he trouble is that I don’t know how to do type inference in the presence
of polymorphic constraints.” In 2010, 10 years after the original idea, Hinze
(2010) rues that the feature has not been implemented yet. As recently as 2016,
Chauhan et al. (2016) regret that “Haskell does not allow the use of universally
quantified constraints” and in 2017 Spivey (2017) has to use pseudo-Haskell
when modeling with quantified class constraints. While various workarounds
have been proposed and are used in practice (Trifonov, 2003; Schrijvers and
Oliveira, 2011; Kmett, 2017), none has stopped the clamor for proper quantified
class constraints. This chapter finally elaborates the original idea of quantified
class constraints into a fully fledged language design.

The remainder of this section introduces quantified class constraints and
illustrates the expressive power afforded by quantified class constraints to
capture several requirements of type class instances more succinctly, and to
provide terminating resolution for a large group of applications.

7.1.2 Precise and Succinct Specifications

Monad Transformers Consider the type class for monad transformers (Jones,
1995a) as defined in the Monad Transformer Library (MTL):2

class Trans t where
lift :: Monad m⇒ m a→ (t m) a

1https://ghc.haskell.org/trac/ghc/ticket/2893
2https://hackage.haskell.org/package/mtl

https://ghc.haskell.org/trac/ghc/ticket/2893
https://hackage.haskell.org/package/mtl

MOTIVATION 141

What is not formally expressed in the above type class declaration, but implicitly
expected, is that for any type T that instantiates Trans there should also be a
Monad instance of the form:

instance Monad m⇒ Monad (T m) where . . .

Because the type checker is not told about this requirement, it will not accept
the following definition of monad transformer composition.

newtype (t1 ∗ t2) m a = C { runC :: t1 (t2 m) a }
instance (Trans t1,Trans t2)⇒ Trans (t1 ∗ t2) where

lift = C · lift · lift

The idea of this code is to lift from monad m to (t2 m) and then to lift from
(t2 m) to t1 (t2 m). However, the second lift is only valid if (t2 m) is a monad
and the type checker has no way of establishing that this fact holds for all
monad transformers t2. Workarounds for this problem do exist in current
Haskell (Trifonov, 2003; Jaskelioff, 2011; Schrijvers and Oliveira, 2011), but
they clutter the code with heavy encodings.

Quantified class constraints allow us to state this requirement explicitly as part
of the Trans class declaration:

class (∀m. Monad m⇒ Monad (t m))⇒ Trans t where
lift :: Monad m⇒ m a→ (t m) a

The instance for transformer composition t1 ∗ t2 now typechecks.

Second-Order Functors Another example can be found in the work of Hinze
(2010). He represents parameterized datatypes, like polymorphic lists and trees,
as the fixpoint Mu of a second-order functor:

data Mu h a = In { out :: h (Mu h) a }
data List2 f a = Nil | Cons a (f a)
type List = Mu List2

A second-order functor h is a type constructor that sends functors to
functors. This can be concisely expressed with the quantified class constraint
∀f. Functor f ⇒ Functor (h f), for example in the Functor instance of Mu:

instance (∀f. Functor f ⇒ Functor (h f))⇒ Functor (Mu h) where
fmap f (In x) = In (fmap f x)

Although this is Hinze’s preferred formulation he remarks that:

142 QUANTIFIED CONSTRAINTS

Unfortunately, the extension has not been implemented yet. It can
be simulated within Haskell ’98 (Trifonov, 2003), but the resulting
code is somewhat clumsy.

Johann and Ghani (2008) use essentially the same data-generic represen-
tation, the fixpoint of second-order functors, to represent so-called nested
datatypes (Bird and Meertens, 1998). For instance, Hinze (2000) represents
perfect binary trees with the nested datatype

data Perfect a = Zero a | Succ (Perfect (a, a))

This can be expressed with the generic representation as Mu HPerf , the fixpoint
of the second-order functor HPerf , defined as

data HPerf f a = HZero a | HSucc (f (a, a))

Johann and Ghani’s notion of second-order functor differs slightly from Hinze’s.3
Ideally, their notion would be captured by the following class declaration:

class (∀f. Functor f ⇒ Functor (h f))⇒ HFunctor h where
hfmap :: (Functor f,Functor g)⇒ (∀x. f x→ g x)→ (∀x. h f x→ h g x)

Like in Hinze’s case, the quantified class constraint expresses that a second-
order functor takes first-order functors to first-order functors. Additionally,
second-order functors provide a second-order fmap, called hfmap, which replaces
f by g, to take values of type (h f x) to type (h g x). Yet, in the absence of
actual support for quantified class constraints, Johann and Ghani provide the
following declaration instead:

class HFunctor h where
ffmap :: Functor f ⇒ (a→ b)→ (h f a→ h f b)
hfmap :: (Functor f,Functor g)⇒ (∀x. f x→ g x)→ (∀x. h f x→ h g x)

In essence, they inline the fmap method provided by the quantified class
constraint in the HFunctor class. This is unfortunate because it duplicates the
Functor class’s functionality.

7.1.3 Terminating Corecursive Resolution

Quantified class constraints were first proposed by Hinze and Peyton Jones
(2000) as a solution to a problem of diverging type class resolution. Consider
their generalized rose tree datatype

data GRose f a = GBranch a (f (GRose f a))
3It is more in line with the category theoretical notion of endofunctors over the category

of endofunctors.

MOTIVATION 143

and its Show instance
instance (Show a,Show (f (GRose f a)))⇒ Show (GRose f a) where

show (GBranch x xs) = unwords [show x, "−", show xs]

Notice the two constraints in the instance context which are due to the two show
invocations in the method definition. Standard recursive type class resolution
would diverge when faced with the constraint (Show (GRose [] Bool)). Indeed,
it would recursively resolve the instance context: Show Bool is easily dismissed,
but Show [GRose [] a] requires resolving Show (GRose [] Bool) again. Clearly
this process loops.

To solve this problem, Hinze and Peyton Jones proposed to write the GRose
instance with a quantified type class constraint as:

instance (Show a,∀x. Show x⇒ Show (f x))⇒ Show (GRose f a) where
show (GBranch x xs) = unwords [show x, "−", show xs]

This would avoid the diverging loop in the type system extension they sketch,
because the two recursive resolvents, Show Bool and ∀x. Show x ⇒ Show [x]
are readily discharged with the available Bool and [a] instances.

When faced with the same looping issue in their Scrap Your Boilerplate
work, Lämmel and Peyton Jones (2005) implemented a different solution: cycle-
aware constraint resolution. This approach detects that a recursive resolvent
is identical to one of its ancestors and then ties the (co-)recursive knot at the
level of the underlying type class dictionaries.

Unfortunately, cycle-aware resolution is not a panacea. It only deals with a
particular class of diverging resolutions, those that cycle. The fixpoint of the
second-order functor HPerf presented above is beyond its capabilities.

instance (Show (h (Mu h) a))⇒ Show (Mu h a) where
show (In x) = show x

instance (Show a,Show (f (a, a)))⇒ Show (HPerf f a) where
show (HZero a) = "(Z " ++ show a ++ ")"
show (HSucc xs) = "(S " ++ show xs ++ ")"

Resolving Show (Mu HPerf Int) diverges without cycling back to the original
constraint due to the nestedness of the perfect tree type:

Show (Mu HPerf Int)
� Show (HPerf (Mu HPerf) Int)
� Show Int,Show (Mu HPerf (Int, Int))
� Show (HPerf (Mu HPerf) (Int, Int))
� Show (Int, Int),Show (Mu HPerf ((Int, Int), (Int, Int)))
� . . .

144 QUANTIFIED CONSTRAINTS

Figure 7.1 Quantified Class Constraints: Syntax Extensions

Q ::= π | Q1 ⇒ Q2 | ∀a. Q constraint
P ::= 〈CS , CI , CL〉 program theory

In contrast, with quantified type class constraints we can formulate the instances
in a way that resolution does terminate.

instance (Show a,∀f. ∀x. (Show x, ∀y. Show y ⇒ Show (f y))⇒ Show (h f x))
⇒ Show (Mu h a) where

show (In x) = show x

instance (Show a,∀x. Show x⇒ Show (f x))⇒ Show (HPerf f a) where
show (HZero a) = unwords ["(Z", show a, ")"]
show (HSucc xs) = unwords ["(S", show xs, ")"]

7.1.4 Summary

In summary, quantified type class constraints enable (a) expressing more of a
type class’s specification in a natural and succinct manner, and (b) terminating
type class resolution for a larger group of applications.

In the remainder of this chapter we discuss all formal aspects of the development
of quantified class constraints.

7.2 Declarative Specification

This section presents the changes to the specification (syntax, typing, and
elaboration) of type classes (Chapter 6) by the introduction of quantified
constraints.

7.2.1 Syntax

The syntax of type classes with quantified constraints is—for the most part—
identical to the one for the basic system (Section 6.2, Figure 6.1). The differences
between the two are highlighted in Figure 7.1.

DECLARATIVE SPECIFICATION 145

Our calculus differs from Haskell ’98 in that it conservatively generalizes the
language of constraints. In Haskell ’98 the constraints that can appear in type
signatures and in class and instance contexts are simple class constraints π of
the form TC τ . As a consequence, the constraint schemes or axioms that are
derived from instances (and for superclasses) are Horn clauses of the form:4

∀a. (π1 ∧ . . . ∧ πn)⇒ π0

These axioms are similar to rank-1 polymorphic types in the sense that the
quantifiers (and the implication) only occur on the outer level. We allow a
more general form of constraints Q where, in analogy with higher-rank types,
quantifiers and implications occur in nested positions. This more expressive form
of constraints can occur in signatures and class/instance contexts. Consequently,
the syntactic sort Q of constraints and axioms S is one and the same.

This allows us to represent the program theory P as three lists of variable-
annotated constraints, instead of the more restrictive form of three lists of
variable-annotated constraint schemes of Figure 6.1. In Haskell, the local
constraints are basic type class constraints π only, while the instance and
superclass axioms have the more expressive Horn clause form (constraint schemes
S). In contrast, in our setting all three components support the same (and more
general) form of Harrop formulae. Thus, constraint schemes S do not appear in
the remainder of this chapter; they are completely subsumed by constraints Q.

Lastly, note that constraint schemes of the form ∀a. (Q1 ∧ . . . ∧ Qn) ⇒ Q0,
used in earlier formalizations of type classes (e.g., by Morris (2014)), are not
valid syntax for our constraints Q because we do not provide a notation for
conjunction. Yet, we can easily see the scheme notation as syntactic sugar for a
curried representation:

∀a. (Q1 ∧ · · · ∧Qn)⇒ Q0 ≡ ∀a. Q1 ⇒ (. . . (Qn ⇒ Q0) . . .)

7.2.2 The Type System

Since the differences between the basic system and the one extended with
quantified constraints are concentrated around the shape of constraints, most
typing relations (as well as the elaboration aspects of them) remain the same:
term typing, well-formedness of types, declaration typing, and program typing
are identical to the ones we presented in Section 6.3. Hence, we refer the reader
to Section 6.3 for their definition.

4Which we capture in the syntax of the basic system by constraint schemes S .

146 QUANTIFIED CONSTRAINTS

The relations that are affected by the genericity of the new constraints Q are
the well-formedness of constraints and, more notably, constraint entailment.
We discuss each in detail below.

Constraint Well-formedness with Elaboration Well-formedness and elabora-
tion of constraints (Γ C̀T Q υ) is extended with two more rules, to account
for the new syntactic forms. It is given by the following rules:

TC defined Γ T̀Y τ υ

Γ C̀T TC τ TTC υ
(Cπ)

Γ C̀T Q1 υ1 Γ C̀T Q2 υ2

Γ C̀T Q1 ⇒ Q2 υ1 → υ2
(C⇒)

a /∈ Γ Γ, a C̀T Q υ

Γ C̀T ∀a. Q ∀a. υ
(C∀)

Rule (Cπ) handles simple class constraints and is identical to the one we
presented in Section 6.3. Rule (C⇒) handles implication constraints and
Rule (C∀) constraints with universal quantification. An interesting takeaway
from the above rules is the elaboration technique they hint at: universal
quantification in constraints corresponds to universally quantified types in
System F and constraint implication corresponds to λ-abstraction. Hence,
in the extended setting of quantified class constraints, constraints are not
elaborated to dictionaries but dictionary transformers.

Additionally, notice that arbitrary nested universal quantification in constraints
translates to higher-rank types in System F. Though this might seem problematic
for type inference (as we discussed in Section 5.3.1), quantified constraints
are always explicitly specified in class and instance declarations. Thus, type
inference remains decidable.

7.2.3 Constraint Entailment

Following the approach of Schrijvers et al. (2017) for their Cochis calculus,
we present constraint entailment in two steps. First, we provide an easy-to-
understand and expressive, yet also highly ambiguous, specification. Then we
present a syntax-directed, semi-algorithmic variant that takes the ambiguity
away, but has a more complicated formulation inspired by the focusing technique
used in proof search (Miller et al., 1989; Andreoli, 1992; Liang and Miller, 2009).

Declarative Specification Constraint entailment takes the standard form
P; Γ |= t : Q, and its high-level declarative specification is given by the rules

DECLARATIVE SPECIFICATION 147

Figure 7.2 Constraint Entailment: Declarative Specification
P; Γ |= t : Q Constraint Entailment Specification

(d : Q) ∈ P
P; Γ |= d : Q

SpecC
a /∈ Γ P; Γ, a |= t : Q

P; Γ |= Λa. t : ∀a. Q
(∀IC)

d /∈ dom(P) ∪ dom(Γ) Γ C̀T Q1 υ P, d : Q1; Γ |= t : Q2

P; Γ |= λ(d : υ). t : Q1 ⇒ Q2
(⇒IC)

P; Γ |= t : ∀a. Q Γ T̀Y τ υ

P; Γ |= t υ : [τ/a]Q
(∀EC)

P; Γ |= t1 : Q1 ⇒ Q2 P; Γ |= t2 : Q1

P; Γ |= t1 t2 : Q2
(⇒EC)

we present in Figure 7.2. To aid readability, we separate the entailment aspect
of the specification from dictionary construction by highlighting the latter.

If we interpret constraints Q as logical formulas, the rules of Figure 7.2 are
nothing more than the rules of the universal fragment of Hereditary Harrop
logic (Harrop, 1956). Rule SpecC is the standard axiom rule. Rules (⇒IC)
and (⇒EC) correspond to implication introduction and elimination, respectively.
Similarly, Rules (∀IC) and (∀EC) correspond to introduction and elimination of
universal quantification, respectively. These are also essentially the rules Hinze
and Peyton Jones (2000) propose.

The dictionary-constructing aspect of the rules follows directly if one interprets
the universal fragment of Hereditary Harrop logic constructively: dictionary
construction is syntax-directed on the dictionary t, corresponding one-to-one to
term typing for the polymorphic λ-calculus (Section 5.2, Figure 5.1).

Unfortunately, while compact and elegant, there is a serious downside to these
rules: they are highly ambiguous and give rise to many trivially different proofs
for the same constraint. For instance, assuming Γ = •, a and P = 〈•, •,Eq a〉,
here are only two of the infinitely many proofs of P; Γ |= Eq a:5

Eq a ∈ P
P; Γ |= Eq a

SpecC

5We omit for brevity the corresponding dictionaries; they do not contribute anything to
understanding the issue at hand.

148 QUANTIFIED CONSTRAINTS

versus

Eq a ∈ P ′

P ′; Γ |= Eq a
SpecC

P; Γ |= Eq a⇒ Eq a
(⇒IC)

Eq a ∈ P
P; Γ |= Eq a

SpecC

P; Γ |= Eq a
(⇒EC)

where P ′ = P,L Eq a. Observe that the latter proof makes an unnecessary
appeal to implication introduction.

Type-directed Specification To avoid the trivial forms of ambiguity like in
the example, we adopt a solution from proof search known as focusing (Andreoli,
1992). This solution was already adopted by the Cochis calculus, for the same
reason. The key idea of focusing is to provide a syntax-directed definition of
constraint entailment where only one inference rule applies at any given time.

Figure 7.3 presents our definition of constraint entailment with focusing. The
main judgment P; Γ |= t : Q is defined in terms of two auxiliary judgments,
P; Γ |= t : [Q] and Γ; t : [Q] |= t′ : π C. In the remainder of this paragraph
we focus on the entailment aspect of the rules only; the dictionary construction
aspect is discussed in the next paragraph.

The main entailment judgment is equivalent to the first auxiliary judgment
P; Γ |= t : [Q]. This auxiliary judgment focuses on the constraint Q whose
entailment is checked—we call this constraint the “goal”. There are three rules,
for the three possible syntactic forms of Q. Rules (⇒R) and (∀R) decompose
the goal by applying implication and quantifier introductions respectively. Once
the goal is stripped down to a simple class constraint π, Rule (πR) selects an
axiom Q from the theory P to discharge it. The selected axiom must match
the goal, a notion that is captured by the second auxiliary judgment. Matching
gives rise to a sequence C of new (and hopefully simpler) goals whose entailment
is checked recursively.

The second auxiliary judgment Γ; t : [Q] |= t′ : π C focuses on the axiom
Q and checks whether it matches the simple goal π. Again, there are three
rules for the three possible forms the axiom can take. Rule (πL) expresses the
base case where the axiom is identical to the goal and there are no new goals.
Rule (⇒L) handles an implication axiom Q1 ⇒ Q2 by recursively checking
whether Q2 matches the goal. At the same time it yields a new goal Q1 which
needs to be entailed in order for the axiom to apply. Finally, Rule (∀L) handles
universal quantification by instantiating the quantified variable in a way that
recursively yields a match.

DECLARATIVE SPECIFICATION 149

Figure 7.3 Constraint Entailment: Tractable Specification
P; Γ |= t : Q Constraint Entailment

P; Γ |= t : [Q]
P; Γ |= t : Q

P; Γ |= t : [Q] Constraint Resolution

d /∈ dom(P) ∪ dom(Γ) Γ C̀T Q1 υ1 P, d : Q1; Γ |= t : [Q2]
P; Γ |= λ(d : υ1). t : [Q1 ⇒ Q2]

(⇒R)

b /∈ Γ P; Γ, b |= t : [Q]
P; Γ |= Λb. t : [∀b. Q]

(∀R)

(d : Q) ∈ P : Γ; d: [Q] |= t : π C
∀(di : Qi) ∈ C : P; Γ |= ti : [Qi]

P; Γ |= [ti/di]t : [π]
(πR)

Γ; t: [Q] |= t′ : π C Constraint Matching

d fresh Γ; t d: [Q2] |= t′ : π C
Γ; t: [Q1 ⇒ Q2] |= t′ : π C, d : Q1

(⇒L)
Γ; t: [π] |= t : π •

(πL)

Γ; t υ: [[τ/b]Q] |= t′ : π C Γ T̀Y τ υ

Γ; t: [∀b. Q] |= t′ : π C
(∀L)

It is not difficult to see that this type-directed formulation of entailment greatly
reduces the number of proofs for given goal.6 For instance, for the example
above there is only one proof:

Eq a ∈ P Γ; [Eq a] |= Eq a • (πL)
P; Γ |= [Eq a]

(πR)

P; Γ |= Eq a

Type-Directed Dictionary Construction The highlighted parts of Figure 7.3
present the specification of type-directed dictionary construction. The meaning
of term t in the constraint entailment and the constraint resolution judgments

6Without loss of expressive power; the specification of Figure 7.3 does not commit to a
particular choice any more than the specification of Figure 7.2.

150 QUANTIFIED CONSTRAINTS

is the expected: evidence term t is a proof that Q is satisfied. In the constraint
matching relation, three kinds of evidence terms are involved: t is an evidence
term witnessing given constraint Q, t′ witnesses the wanted constraint π, and
the residual constraints C are annotated with dictionary variables, representing
the assumptions that remain to be proven.

Rules (⇒R) and (∀R) are straightforward. Rule (πR) produces evidence term t
by combining given proof d and residual evidence terms di. The complete proof
for the wanted constraint π is obtained by substituting the actual evidence
terms ti for the temporary dictionary variables di, each witnessing a residual
constraint Qi.

Constraint matching operates by gradually specializing the evidence term t
(witnessing constraint Q), until the given and the wanted constraints match. The
base case is captured in Rule (πL), where the given and the wanted constraints
are identical. In this case, the witness for both is the same. Rule (⇒L) focuses
on the right-hand side of the implication (eliminates the arrow) by providing a
fresh dictionary argument d to capture the residual constraint Q1. Finally, the
implicit specialization of the given constraint in Rule (∀L) becomes explicit in
the witness term, which is explicitly applied to the type it is instantiated with.

7.2.4 Remaining Non-determinism

While focusing makes the definition of constraint entailment type-directed, there
are still two sources of non-determinism. As a consequence, the specification is
still ambiguous and not an algorithm.

Overlapping Axioms The first source of non-determinism is that in Rule (πR)
there may be multiple matching axioms that make the entailment go through.
For applications of logic where proofs are irrelevant this is not a problem, but
in Haskell where the proofs have computational content (namely the method
implementations) this is a cause for concern. Haskell ’98 also faces this problem.
Consider two instances for the same type:

class Default a where { default :: a }
instance Default Bool where { default = True }
instance Default Bool where { default = False }

The two instances give rise to two different proofs for Default Bool, with distinct
computational content (True vs. False). We steer away from this problem in the
same way as Haskell ’98, by requiring that instance declarations do not overlap.
This does not rule out the possibility of distinct proofs for the same goal, but

DECLARATIVE SPECIFICATION 151

Figure 7.4 Unambiguity
unamb(Q) Unambiguity

• ÙNAMB Q
unamb(Q)

Unamb

a ÙNAMB Q Unambiguity

a ⊆ fv(π)
a ÙNAMB π

(πU)
a, a ÙNAMB Q
a ÙNAMB ∀a. Q

(∀U)
unamb(Q1) a ÙNAMB Q2

a ÙNAMB Q1 ⇒ Q2
(⇒U)

at least distinct proofs have the same computational content. Consider a class
hierarchy where C is the superclass of both D and E.

class C a where { . . . }
class C a⇒ D a where { . . . }
class C a⇒ E a where { . . . }

This gives rise to the superclass axioms ∀a. D a ⇒ C a and ∀a. E a ⇒ C a.
Given additionally two local constraints D τ and E τ , we have two ways to
establish C τ . The proofs are distinct, yet ultimately the computational content
is the same. This is easy to see as only instances supply the computational
content and there can be at most one instance for any given type τ .

In summary, non-overlap of instances is sufficient to ensure coherence.

Guessing Polymorphic Instantiation A second source of ambiguity is that
Rule (∀L) requires guessing an appropriate type τ for substituting the type
variable b. Guessing is problematic because there is an infinite number of types
to choose from and more than one of those choices can make the entailment
work out. Choosing an appropriate type is a problem for the type inference
algorithm in the next section. As we discussed in Section 6.5, different choices
leading to different proofs is a more fundamental problem that also manifests
itself in Haskell’98.

Indeed, Definition 4 captures the requirement that all quantified type variables
appear in the head of an axiom. Because our axioms have a more general,
recursively nested form, we generalize this requirement in a recursively nested
fashion. The predicate unamb(Q) in Figure 7.4 formalizes the requirement in
terms of the auxiliary judgment a ÙNAMB Q, where a are type variables that need
to be determined by the head of Q. Rule (πU) constitutes the base case where π

152 QUANTIFIED CONSTRAINTS

is the head and contains the determinable type variables a. Rule (∀U) processes
a quantifier by adding the new type variable to the list of determinable type
variables a. Finally, Rule (⇒U) checks whether the head Q2 of the implication
determines the type variables a. It also recursively checks whether Q1 is
unambiguous on its own. The latter check is necessary because left-hand sides
of implications are themselves added as axioms to the theory in Rule (⇒R);
hence they must be well-behaved on their own.

The predicate unamb(Q) must be imposed on all constraints that are added
to the theory. This happens in four places: the instance axioms added in
Rule Instance, the superclass axioms added in Rule Class, the local axioms
added when checking against a given signature in Rule (⇒I) and the local
axioms added during constraint entailment checking in Rule (⇒R). These four
places can be traced back to three places in the syntax: class and instance
heads, and (method) signatures.

7.3 Type Inference with Elaboration

We now turn to type inference and elaboration in the presence of quantified
class constraints. Similarly to the declarative specification, the extension of
the system with quantified constraints affects the algorithm in a minimal way:
the relevant relations and functions for terms (Γ T̀M e : τ t | C ; E), types
(elabTY(σ) = υ), declarations (Γ C̀LS cls : P; Γ′ decl (class declarations),
P; Γ ÌNS ins : P ′ decl (class instances), and P; Γ V̀AL val : Γ′ decl (value
bindings)), and programs (P̀GM pgm : P; Γ decl) are identical to the ones for
the basic system (Section 6.4).

The relations and functions that are affected by the more general form of
constraints are constraint elaboration (elabCT(Q) = υ) and, notably, constraint
entailment with dictionary construction (a; A |= C1 C2; η). These relations
are the subject of the remainder of this section.

7.3.1 Constraint Elaboration

Elaboration of constraints takes the form elabCT(Q) = υ and conservatively
extends the definition we gave in Section 6.4, to account for the new syntactic
forms. It is given by the following clauses:

elabCT(TC τ) = TTC elabTY(τ)
elabCT(∀a. Q) = ∀a. elabCT(Q)
elabCT(Q1 ⇒ Q2) = elabCT(Q1)→ elabCT(Q2)

TYPE INFERENCE WITH ELABORATION 153

Similarly to the basic system, elaboration of constraints follows directly from
the specification of well-formedness and elaboration of constraints; function
elabCT(Q) = υ essentially implements the elaboration-part of specification
Γ C̀T Q υ (see Section 7.2). For example, the constraint corresponding
to the Show instance for type HPerf of Section 7.1.2

∀f. ∀a. Show a⇒ (∀x. Show x⇒ Show (f x))⇒ Show (HPerf f a)

is elaborated into the type

∀f. ∀a. TShow a→ (∀x. TShow x→ TShow (f x))→ TShow (HPerf f a)

7.3.2 Constraint Solving

Similarly to the basic system, the type class and equality constraints derived from
terms are solved with two algorithms: unification and class constraint entailment.
Unification is identical to that of the basic system (function unify(a; E) = θ⊥,
Section 6.4), so we only discuss the constraint entailment algorithm here.

Solving Type Class Constraints Figure 7.5 defines the judgment for solving
type class constraints; it takes the form a; P |= C1 C2; η. Given a set of
untouchable type variables a and a theory P, it (exhaustively) replaces a set of
constraints C1 with a set of simpler, residual constraints C2, via the auxiliary
judgment a; P |= [Q] C; η, explained below.

Simplification Auxiliary judgment a; P |= [Q] C; η uses the theory P to
simplify a single constraintQ to a set of simpler constraints without instantiating
any of the untouchable type variables a. Following the focusing approach, the
judgment is defined by three rules, one for each of the syntactic forms of the
goal Q.

Rules (⇒R) and (∀R) recursively simplify the head of the goal. Observe that
we add the bound variable b to the untouchables a when going under a binder
in Rule (∀R). Once the goal is stripped down to a simple class constraint
Π, Rule (πR) selects an axiom Q whose head matches the goal, and uses it
to replace the goal with a set of simpler constraints C (a process known as
context reduction (Jones, 1995b)). Goal matching is performed by judgment
a; [Q] |= Π C; θ; η, discussed below.

Matching Auxiliary judgment a; [Q] |= Π C; θ; η focuses on the axiom Q
and checks whether it matches the simple goal Π. The main difference between

154 QUANTIFIED CONSTRAINTS

Figure 7.5 Constraint Entailment with Dictionary Construction
a; P |= C1 C2; η Constraint Solving Algorithm

@Q ∈ C1 : a; P |= [Q] C2 ; η
a; P |= C1 C1; •

Stop

a; P |= [Q] C2 ; η1 a; P |= C1, C2 C3; η2

a; P |= C1,Q C3; (η2 · η1)
Step

a; P |= [Q] C ; η Constraint Simplification

a; P,L (d1 : Q1) |= [d2 : Q2] (d : Q) ; η
d
′
, d1, d2 fresh η′ = [λ(d1 : elabCT(Q1)). [d′ d1/d](η(d2))/d0]

a; P |= [d0 : Q1 ⇒ Q2] (d′ : Q1 ⇒ Q) ; η′
(⇒R)

d
′
, dQ fresh a, b; P |= [dQ : Q0] (d : Q) ; η

a; P |= [d0 : ∀b. Q0] (d′ : ∀b. Q) ; [Λb. [d′ b/d](η(dQ))/d0]
(∀R)

Q ∈ P : a; [Q] |= Π C; θ ; η
a; P |= [Π] C ; η

(πR)

a; [Q] |= Π C; θ ; η Constraint Matching

d1, d2 fresh a; [d2 : Q2] |= Π C; θ ; η
a; [d : Q1 ⇒ Q2] |= Π C, d1 : θ(Q1); θ ; [d d1/d2] · η

(⇒L)

d′ fresh a; [d′ : Q] |= Π C; θ ; η
a; [d : ∀b. Q] |= Π C; θ ; [d (θ(b))/d′] · η

(∀L)

θ = unify(a; τ1 ∼ τ2)
a; [d′ : TC τ1] |= d : TC τ2 •; θ ; [d′/d]

(πL)

TYPE INFERENCE WITH ELABORATION 155

this algorithmic relation and its declarative specification in Figure 7.3 lies in the
type substitution θ. Instead of guessing a type for instantiating a polymorphic
axiom in Rule (∀L) (top-down), we defer the choice until the head of the axiom
is met, in Rule (πL) (bottom-up). Observe that Rule (∀L) does not record b as
untouchable, effectively turning it into a unification variable. Thus, by unifying
the head of the axiom with the goal we can determine without guessing an
instantiation for all top-level quantifiers, captured by the type substitution θ.

Search As Section 7.2.4 has remarked, there may be multiple matching axioms,
e.g., due to overlapping superclass axioms. The straightforward algorithmic
approach to the involved non-determinism is search, possibly implemented
by backtracking. The GHC Haskell implementation can employ a heuristic
to keep this search shallow. It does so by using the superclass constraints
very selectively: whenever a new local constraint is added to the theory, it
pro-actively derives all its superclasses and adds them as additional local axioms
(just as function ScClosure(a,P) = (A,E) does for the basic system). When
looking for a match, it does not consider the superclass axioms and prefers
the local axioms over the instance axioms. If a matching local axiom exists,
it immediately discharges the entire goal without further recursive resolution.
This is the case because in regular Haskell local axioms are always simple class
constraints π.

In our setting, we can also implement (a modified version of) GHC’s heuristic,
but this does not obviate the need for deep search. The reason is that our local
axioms are not necessarily simple axioms, and matching against them may leave
residual goals that require further recursive resolution. When that recursive
resolution gets stuck, we have to backtrack over the choice of axiom. Consider
the following example.

class (E a⇒ C a)⇒ D a
class (G a⇒ C a)⇒ F a

Given local axioms D a, F a and G a, consider what happens when we resolve
the goal C a. The superclasses E a ⇒ C a and G a ⇒ C a of respectively
D a and F a both match this goal. If we pick the first one, we get stuck when
recursively resolving E a. However, if we backtrack and consider the second
one instead, we can recursively resolve G a against the given local constraint.

In summary, because we do not see a general way to avoid search, our prototype
implementation uses backtracking for choosing between the different axioms.7

7It is worth mentioning that the rules of Figure 7.5 conservatively extend standard Haskell
resolution, both in terms of expressivity and performance.

156 QUANTIFIED CONSTRAINTS

7.3.3 Dictionary Construction

The entailment algorithm of Figure 7.5 constructs explicit witness proofs (in
the form of dictionary substitutions) while entailing a constraint.

Simplification The evidence substitution η in the simplification relation shows
how to construct a witness for the wanted constraint Q from the simpler
constraints C and program theory P.

The goal of Rule (⇒R) is to build an evidence substitution η′, which constructs
a proof for (d0 : Q1 ⇒ Q2) from the proofs d′ for the simpler constraints
Q1 ⇒ Q. It is instructive to consider the generated evidence substitution in
parts, also taking the types into account:

1. η illustrates how to generate a proof for (d2 : Q2), from the local
assumption (d1 : Q1) and local residual constraints (d : Q).

2. [d′ d1/d] generates proofs for the (local) residual constraints (d : Q), by
applying the residual constraints (d′ : Q1 ⇒ Q) to the local assumption
(d1 : Q1).

3. ([d′ d1/d] · η)(d2) is a proof for Q2, under assumptions (d1 : Q1) and
(d′ : Q1 ⇒ Q).

4. Finally, we construct the proof for (d0 : Q1 ⇒ Q2) by explicitly abstracting
over d1: λ(d1 : υ1). [d′ d1/d](η(d2))

Rule (∀R) proceeds similarly. Finally, Rule (πR) generates the evidence
substitution via constraint matching, which we discuss next.

Matching Similarly, the evidence substitution η in the matching relation
shows how to construct a witness for the wanted constraint Π from the simpler
constraints C and program theory P.

Rule (⇒L) generates two fresh dictionary variables, d1 for the residual constraint
θ(Q1), and d2 for the local assumption Q2. Finally, dictionary d2 is replaced by
the application of the dictionary transformer d to the residual dictionary d1.
Rule (∀L) behaves similarly. The instantiation of the axiom d becomes explicit,
by applying it to the chosen type θ(b). Finally, Rule (πL) is straightforward:
since the wanted and the given constraints are identical (given that they unify),
the wanted dictionary d is replaced by the given d′.

TERMINATION OF RESOLUTION 157

Figure 7.6 Termination Condition
head(Q) = π Constraint Head

head(π) = π
head(∀a. Q) = head(Q)
head(Q1 ⇒ Q2) = head(Q2)

term(Q) Termination Condition

term(π)
(πT)

term(Q)
term(∀a. Q)

(∀T)

term(Q1) term(Q2) π1 = head(Q1) π2 = head(Q2)
‖π1‖ < ‖π2‖ ∀a ∈ fv(Q1) ∪ fv(Q2) : occa(π1) ≤ occa(π2)

term(Q1 ⇒ Q2)
(⇒T)

7.4 Termination of Resolution

Termination of resolution is the cornerstone of the overall termination of type
inference. This section discusses how to enforce termination by means of
syntactic conditions on the axioms. These conditions are adapted from those of
Cochis (Schrijvers et al., 2017) and generalize the earlier conditions for Haskell
by Sulzmann et al. (2007b).

Overall Strategy We show termination by characterizing the resolution process
as a (resolution) tree with goals in the nodes and axioms on the (multi-)edges.
The initial goal sits at the root of the tree. A multi-edge from a parent node
to its children presents an axiom that matches the parent node’s goal and its
children are the residual goals. Resolution terminates iff the tree is finite. Hence,
if it does not terminate, there is an infinite path from the root in the tree, that
denotes an infinite sequence of axiom applications.

To show that there cannot be such an infinite path, we use a norm ‖·‖ that
maps the head of every goal Q to a natural number, its size. The size of a class
constraint TC τ is the size of its type parameter τ , which is identical to the
definition we gave for the basic system (Section 6.5). The head of a constraint
is computed by function head(Q), presented in Figure 7.6 (top).

If we can show that this size strictly decreases from any parent goal to its

158 QUANTIFIED CONSTRAINTS

children, then we know that, because the order on the natural numbers is
well-founded, on any path from the root there is eventually a goal that has no
children.

Termination Condition It is trivial to show that the size strictly decreases, if
we require that every axiom makes it so. This requirement is formalized as the
termination condition of axioms term(Q), presented in Figure 7.6 (bottom).

Rule (⇒T) for Q1 ⇒ Q2 enforces the main condition, that the size of the
residual constraint’s head π1 is strictly smaller than the head π2 of Q2. In
addition, the rule ensures that this property is stable under type substitution.
Consider for instance the axiom ∀a. C (a → a) ⇒ C (a → Int → Int). The
head’s size 5 is strictly greater than the context constraint’s size 3. Yet, if we
instantiate a to (Int → Int → Int), then the head’s size becomes 10 while the
context constraint’s size becomes 11. Declaratively, we can formulate stability
as:

∀θ.dom(θ) ⊆ fv(Q1) ∪ fv(Q2)⇒ ‖θ(π1)‖ < ‖θ(π2)‖

The rule uses instead an equivalent algorithmic formulation which states that
the number of occurrences of any free type variable a may not be larger in
π1 than in π2. Here the number of occurrences of a type variable a in a class
constraint TC τ (denoted as occa(TC τ)) is the same as the number of free
occurrences of a in the parameter τ , where function occa(τ) is defined as for
the basic system (Section 6.5).

Finally, as the constraints have a recursive structure whereby their components
are themselves used as axioms, the rules also enforce the termination condition
recursively on the components.

Superclass Condition If we could impose the termination condition above on
all axioms in the theory P, we would be set. Unfortunately, this condition is too
strong for the superclass axioms. Consider the superclass axiom ∀a. Ord a⇒
Eq a of the standard Haskell ’98 Ord type class. Here both Ord a and Eq a
have size 1; in other words, the size does not strictly decrease and so the axiom
does not satisfy the termination condition.

To accommodate this and other examples, we impose an alternative condition
for superclass axioms. This superclass condition relaxes the strict size decrease
to a non-strict size decrease and makes up for it by requiring that the superclass
relation forms a directed acyclic graph (DAG). The superclass relation is defined
on type classes as follows:

RELATED WORK 159

Definition 5 (Superclass Relation). Given a class declaration

class (Q1, . . . ,Qn)⇒ TC a where { f :: σ }

each type class TCi is a superclass of TC, where head(Qi) = TCi τi.

Observe that the DAG induces a well-founded partial order on type classes.
Hence, on any path in the resolution tree, any uninterrupted sequence of
superclass axiom applications has to be finite. For the length of such a sequence,
the size of the goal does not increase (but might not decrease either). Yet, after
a finite number of steps the sequence has to come to an end. If the path still
goes on at that point, it must be due to the application of an instance or local
axiom, which strictly decreases the goal size. Hence, overall we have preserved
the variant that the goal size decreases after a bounded number8 of steps.

Other Properties Finally, although we have not proven it formally yet, we
are confident that soundness of type inference and preservation of typing
under elaboration hold independently of termination (and thus are not affected
by whether the termination conditions are met). Such a property is crucial
for integrating our algorithm within GHC in the future, where flags such as
UndecidableInstances are heavily used. Similarly, elaboration is coherent if
overlapping instances are disallowed; as we discuss in Section 10.3.2, the formal
proof of all these properties constitutes part of our future work.

7.5 Related Work

This section discusses related work, focusing mostly on comparing our approach
with existing encodings/workarounds in Haskell. The history of quantified class
constraints and their demand in previous research was already discussed in
Section 7.1.1.

The Coq Proof Assistant Coq provides very flexible support for type
classes (Sozeau and Oury, 2008) and allows for arbitrary formulas in class
and instance contexts—actually the contexts are just parameters. For instance,
we can model the Trans class as:

Class Trans (T : (Type -> Type) -> Type -> Type)
‘{forall M, ‘{Monad M} -> Monad (T M)} :=
{ lift : forall A M, ‘{Monad M} -> M A -> (T M) A }.

8bounded by the height of the superclass DAG

160 QUANTIFIED CONSTRAINTS

The downside of Coq’s flexibility is that resolution can be ambiguous and
non-terminating. The accepted workaround is for the programmer to perform
resolution manually when necessary. This is acceptable in the context of Coq’s
interactive approach to proving, but would mean a great departure from Haskell’s
non-interactive type inference.

Trifonov’s Workaround and Monatron Trifonov (2003) gives an encoding of
quantified class constraints in terms of regular class constraints. The encoding
introduces a new type class that encapsulates the quantified constraint, e.g.
Monad_t t for ∀m. Monad m⇒ Monad (t m), and that provides the implied
methods under a new name. This expresses the Trans problem as follows:

class Monad_t t where
treturn :: Monad m⇒ a→ t m a
tbind :: Monad m⇒ t m a→ (a→ t m b)→ t m b

class Monad_t t⇒ Trans t where
lift :: Monad m⇒ m a→ t m a

While this approach captures the intention of the quantified constraint, it does
not enable the type checker to see that Monad (t m) holds for any transformer
t and monad m. While the monad methods are available for t m, they do not
have the usual name.

For this reason, Trifonov presents a further (non-Haskell ’98) refinement of the
encoding, which was adopted by the Monatron (Jaskelioff, 2011) library9 among
others. A non-essential difference is that Monatron merges the above Monad_t
and Trans into a single class:

class MonadT t where
lift :: Monad m⇒ m a→ t m a
treturn :: Monad m⇒ a→ t m a
tbind :: Monad m⇒ t m a→ (a→ t m b)→ t m b

The key novelty is that it also makes the methods treturn and tbind available
under their usual name with a single Monad instance for all monad transformers.

instance (Monad m,MonadT t)⇒ Monad (t m) where
return = treturn
(»=) = tbind

With these definitions the monad transformer composition does type check.
Unfortunately, the head of the Monad (t m) instance is highly generic and easily
overlaps with other instances.

9For the implementation see https://hackage.haskell.org/package/Monatron.

https://hackage.haskell.org/package/Monatron

RELATED WORK 161

The MonadZipper Because they found Monatron’s overlapping instances
untenable, Schrijvers and Oliveira (2011) presented a different workaround
for this problem in the context of their monad zipper datatype, which is an
extended form of transformer composition. Their solution adds a method mw
to the Trans type class:

class Trans t where
lift :: Monad m⇒ m a→ t m a
mw :: Monad m⇒ MonadWitness t m

For any monad m this method returns a GADT (Peyton Jones et al., 2006)
witness for the fact that t m is a monad. This is possible because with GADTs,
type class instances can be stored in the data constructors.

data MonadWitness (t :: (∗ → ∗)→ (∗ → ∗)) m where
MW :: Monad (t m)⇒ MonadWitness t m

By pattern matching on the witness of the appropriate type the programmer
can bring the required Monad (t2 m) constraint into scope to satisfy the type
checker.

instance (Trans t1,Trans t2)⇒ Trans (t1 ∗ t2) where
lift :: ∀m. ∀a. Monad m⇒ m a→ (t1 ∗ t2) m a
lift = case (mw :: MonadWitness t2 m) of

MW → C · lift · lift

mw = . . .

The downside of this approach is that it offloads part of the type checker’s work
on the programmer. As a consequence, the code becomes cluttered with witness
manipulation.

The constraint Library Kmett’s constraint library (Kmett, 2017) provides
generic infrastructure for reifying quantified constraints in terms of GADTs,
generalizing the MonadZipper solution above. Additionally, it complements
the encoding with ample utilities for the manipulation of such constraints.
Unfortunately, it suffers from the same problem: passing, construction
and deconstruction of dictionaries needs to be manually performed by the
programmer.

Corecursive Resolution Fu et al. (2016) address the divergence problem that
arises for generic nested datatypes. They turn the diverging resolution with
user-supplied instances into a terminating resolution in terms of automatically

162 QUANTIFIED CONSTRAINTS

derived instances. These auxiliary instances are derived specifically to deal with
the query at hand; they shift the pattern of divergence to the term-level in the
form of co-recursively defined dictionaries. The authors do point out that the
class of divergent cases they support is limited and that deriving quantified
instances would be beneficial.

Cochis The calculus of coherent implicits, Cochis (Schrijvers et al., 2017),
and its predecessor, the implicit calculus (Oliveira et al., 2012), have been
a major inspiration for our work. Just like our calculus, Cochis supports
recursive resolution of quantified constraints using a focusing-based algorithm.
Yet, there are a number of significant differences. Firstly, Cochis does not
feature a separate syntactic sort for type classes, but implicitly resolves regular
terms in the Scala tradition. As a consequence, it does not distinguish between
instance and superclass axioms, e.g., for the sake of enforcing termination and
coherence. Perhaps more significantly, Cochis features local “instances” as
opposed to our globally scoped instances. Local instances may overlap with
one another and coherence is obtained by prioritizing those instances that are
introduced in the innermost scope. This way Cochis’s resolution is entirely
deterministic, while ours is non- deterministic (yet coherent) due to overlapping
local and superclass axioms.

7.6 Scientific Output

This chapter has presented a fully fledged design of quantified class constraints,
a feature that has been requested by users for eighteen years. We have shown
that this feature significantly increases the modelling power of type classes,
while at the same enables a terminating type class resolution for a larger class
of applications.

Most of the material found in this chapter is drawn from the following
publication:

Gert-Jan Bottu, Georgios Karachalias, Tom Schrijvers, Bruno C. d. S.
Oliveira and Philip Wadler (2017). Quantified Class Constraints. In
Proceedings of the 10th ACM SIGPLAN International Symposium on
Haskell, Haskell ’17, pp. 148–161, Oxford, UK, September 7–8, 2017.

In addition to the material presented in the above publication, this chapter
also presents the specification of elaboration (Section 7.2.3); this allows for the
formal statement of the correctness of dictionary construction of Section 7.3.

SCIENTIFIC OUTPUT 163

Furthermore, we have implemented the type inference and elaboration algorithm
of Section 7.3 in a prototype compiler, which is available at

https://github.com/gkaracha/quantcs-impl

The prototype incorporates higher-kinded datatypes and performs type inference,
elaboration into System F, and type checking of the generated code.

Within this multi-author work, the contribution of each author has been the
following:

• The key idea of using the focusing technique has been introduced
by Schrijvers et al. (2017).

• The specification of typing and elaboration, as well as the type inference
algorithm with evidence generation has been collaboratively designed by
the author of this thesis, Gert-Jan Bottu, and Tom Schrijvers.

• The initial prototype implementation of quantified class constraints has
been collaboratively developed by the author of this thesis and Gert-Jan
Bottu. The latest version is a revision by the author of this thesis.

https://github.com/gkaracha/quantcs-impl

Chapter 8

Functional Dependencies

In this chapter we present the second of our extensions to type classes: Functional
Dependencies.

The idea of functional dependencies has been introduced eighteen years
ago (Jones, 2000) and they have enjoyed widespread use since their introduction
in Haskell compilers. Nevertheless, their design and implementation in GHC
has never been completely faithful to their specification. In this chapter, we
revisit the idea of functional dependencies and give a novel specification of their
semantics, which allows their proper integration within the Haskell eco-system.

More specifically, the chapter is structured as follows: Section 8.1 motivates the
development of functional dependencies and presents infelicities of their existing
formalizations and implementations. Section 8.2 gives a logical interpretation
of functional dependencies in terms of first-order logic; Section 8.3 utilizes this
interpretation to give our specification of typing for type classes with functional
dependencies. In order to capture the inherently non-parametric semantics
of functional dependencies, Section 8.4 presents System FC (Sulzmann et al.,
2007a), an extension of System F with open, non-parametric type functions;
System FC serves as our target language. Section 8.5 develops a type-inference
algorithm for type classes with functional dependencies, which elaborates source
programs to System FC. Section 8.6 formulates the most important meta-
theoretical properties of our development. Section 8.7 discusses related work.
Finally, Section 8.8 concludes and summarizes the scientific output of this work.

165

166 FUNCTIONAL DEPENDENCIES

8.1 Motivation

This section motivates the development of functional dependencies that is
presented in the remainder of this chapter. Since functional dependencies made
their first appearance eighteen years ago (Jones, 2000), Section 8.1.1 gives a
brief historical note on their development since they were originally introduced
in Haskell. Next, Section 8.1.2 informally presents functional dependencies
through a series of examples. Sections 8.1.3, 8.1.4, and 8.1.5 discuss the three
main challenges we aim to address. Finally, Section 8.1.6 discusses our approach
in intuitive terms; our formalization is presented in subsequent sections.

8.1.1 A History of Functional Dependencies

After type classes were introduced by Wadler and Blott (1989), the feature was
quickly and naturally generalized from single-parameter predicates over types
to relations over multiple types. Unfortunately, these so-called multi-parameter
type classes easily give rise to ambiguous situations where the combination of
types in the relation can, as a matter of principle, not be uniquely determined.
In many situations a functional relation between the types that inhabit a
multi-parameter type class is intended. Hence, Jones proposed the functional
dependency language extension (Jones, 2000), which specifies that one class
parameter determines another.

Functional dependencies became quite popular, not only to resolve ambiguity,
but also as a device for type-level computation, which was used to good
effect, e.g., for operations on heterogeneous collections (Kiselyov et al., 2004).
They were supported by Hugs, Mercury, Habit (Jones, 2010) and also GHC.
However, the implementation in GHC has turned out to be problematic: as
far as we know, it is not possible to elaborate all well-typed programs with
functional dependencies into GHC’s original typed intermediate language based
on System F (Girard, 1972; Reynolds, 1974, 1983). As a consequence, GHC
rejects programs that are perfectly valid according to the theory of Sulzmann
et al. (2007b). What’s more, GHC’s type checker does accept programs that
violate the functional dependency property.

With the advent of associated types (Chakravarty et al., 2005a) (a.k.a. type
families) came a new means for type-level computation, with a functional
notation. Because it too cannot be elaborated into System F, a new extended
core calculus with type-equality coercions was developed, called System
FC (Sulzmann et al., 2007a). However, it was never investigated whether
functional dependencies would benefit from this more expressive core language.
To date functional dependencies remain a widely popular, yet unreliably

MOTIVATION 167

implemented feature. They are even gaining new relevance as functional
dependency annotations on type families are being investigated (Stolarek et al.,
2015).

Furthermore, as Jones and Diatchki (2008) rightly pointed out, the interaction
of functional dependencies with other features has not been formally studied.
In fact, recent discussions in the Haskell community indicate an interest in
the interaction of functional dependencies with type families (GHC feature
request #11534). Moreover, the unresolved nature of the problem has
ramifications beyond Haskell, as PureScript has also recently adopted functional
dependencies.1

8.1.2 Functional Dependencies

The concept of a functional dependency originates in relational database
theory (Silberschatz et al., 2006): a relation R satisfies the functional dependency
X → Y , where X and Y are attributes of R, iff:

∀(x, y1), (x, y2) ∈ R. y1 = y2 (8.1)

In other words, every X value in R is associated with precisely one Y value.
The feature was first introduced in Haskell by Jones (2000) as an extension to
multi-parameter type classes and has been widely used over the years. The
following variant of the well-known collection example (Peyton Jones, 1997)
illustrates the feature:

class Coll c e | c→ e where
singleton :: e→ c

The class Coll abstracts over collection types c with element type e. The
functional dependency (c→ e) expresses that “c uniquely determines e”. Hence,
functional dependencies have exactly the same meaning in Haskell as in relational
database theory. After all, a multi-parameter type class like Coll can easily be
seen as a relation over types. There is one main difference between Haskell type
classes and database relations: the latter are typically defined extensionally (i.e.,
as a finite enumeration of tuples). In contrast, the former are given intensionally
by means of type class instances (which can be seen as Horn clauses) from
which infinitely many tuples can be derived by means of type class resolution.

Besides supporting functional dependencies syntactically as documentation for
the programmer, Haskell also supports functional dependencies semantically in
two ways. Firstly, it enforces that the type class instances respect the functional

1http://goo.gl/V55whi

https://ghc.haskell.org/trac/ghc/ticket/11534
http://goo.gl/V55whi

168 FUNCTIONAL DEPENDENCIES

dependency. This means for example that we cannot define two instances that
associate different element types with the same collection type:

instance Coll Integer Bit where {singleton c = . . . }
instance Coll Integer Byte where {singleton c = . . . }

Secondly, functional dependencies give rise to more precise types and resolve
ambiguities. For example, ignoring the functional dependency of Coll, function:

singleton2 c = singleton (singleton c)

has the ambiguous type:

singleton2 :: (Coll c1 e,Coll c2 c1)⇒ e→ c2

Type variable c1 does not appear on the right of the ⇒, which in turn means
that no matter what argument we call singleton2 on, c1 will not be determined.
Such ambiguous programs are typically rejected, since their run-time behavior
is unpredictable (Section 8.6).

Yet, the functional dependency expresses that c1 is not free, but uniquely
determined by the choice of c2, which will be fixed at call sites. Hence, if we
take the functional dependency into account, singleton2 ’s type is no longer
ambiguous.

While functional dependencies are well-understood in the world of databases (Sil-
berschatz et al., 2006), their incarnation in Haskell is still surrounded by a
number of major algorithmic challenges and open questions.

8.1.3 Challenge 1: Enforcing Functional Dependencies

Unfortunately, the current implementation of functional dependencies in the
Glasgow Haskell Compiler does not enforce the functional dependency property
(Equation 8.1) in all circumstances.2 The reason is that no criteria have been
identified to do so under the Liberal Coverage Condition (Sulzmann et al., 2007b,
Def. 15), which regulates ways of defining functional dependencies indirectly

2See for example GHC bug reports #9210 and #10675.

https://ghc.haskell.org/trac/ghc/ticket/9210
https://ghc.haskell.org/trac/ghc/ticket/10675

MOTIVATION 169

through instance contexts. The following example illustrates the problem.

class C a b c | a→ b where {foo :: a→ c→ b}

class D1 a b | a→ b where {bar :: a→ b}
class D2 a b | a→ b where {baz :: a→ b}

instance D1 a b⇒ C [a] [b] Int where {foo [a] _ = [bar a]}
instance D2 a b⇒ C [a] [b] Bool where {foo [a] _ = [baz a]}
instance D1 Int Int where {bar = id}
instance D2 Int Bool where {baz = even}

The above instances satisfy the Liberal Coverage Condition and imply that
the 3-parameter type class C is inhabited by triples ([Int], [Bool],Bool) and
([Int], [Int], Int). If we project the triples on the functional dependency a → b,
then we see that [Int] is associated with both [Int] and [Bool]. In other words,
the functional dependency is violated. Yes, as the following two expressions
show, GHC has no qualms about using both instances:

ghci> foo [1 :: Int] (True :: Bool)
[False]

ghci> foo [1 :: Int] (2 :: Int)
[1]

In short, GHC’s current implementation of functional dependencies does
not properly enforce the functional dependency property. This is not an
implementation problem, but points at problem in the theory: it is an open
challenge how to do so under the Liberal Coverage Condition.

8.1.4 Challenge 2: Elaborating Functional Dependencies

GHC elaborates Haskell source programs into the typed intermediate language
System FC (Sulzmann et al., 2007a), which is an extension of System F with type
equality coercions. Unfortunately, when it comes to functional dependencies,
the elaboration process is incomplete: while Sulzmann et al. (2007b) provide the
most concise and formal account of functional dependencies we are aware of, it
has never been investigated how well-typed programs with respect to Sulzmann
et al. (2007b) can be elaborated into System FC.

Hence, GHC currently rejects those programs it cannot elaborate. It turns out,
the problem is more general: due to the non-parametric semantics of functional
dependencies, it is not possible to translate them to a statically-typed language
like System F that features only parametric polymorphism. Indeed, as we

170 FUNCTIONAL DEPENDENCIES

discuss in Section 8.6.3, Hugs (which also translates to an intermediate language
akin to System F) suffers from the same problem. Consider for instance the
following program, which originates from GHC bug report #9627.

class C a b | a→ b f :: C Int b⇒ b→ Bool
instance C Int Bool f x = x

This program is rejected because GHC has difficulty determining that type
b equals Bool during the type-checking of function f . Yet, it is actually not
difficult to see that the equality holds. From the functional dependency and
the one instance for type class C , it follows that Int is uniquely associated with
Bool. Hence, from the type class constraint C Int b, it must indeed follow that
b equals Bool; b is not a type parameter that can be freely instantiated.

How to elaborate all well-typed Haskell programs with functional dependencies
(with respect to the formal system of Sulzmann et al. (2007b)) into a typed
intermediate language like System FC is currently an open problem.

8.1.5 Challenge 3: Deduplicating Functional Dependencies

About ten years ago, a new type-level feature was introduced in Haskell that
replicates much of the functionality of functional dependencies: (associated)
type families (Chakravarty et al., 2005a). They provide a functional, rather
than a relational, notation for expressing a functional dependency between
types. For instance, with associated type families we can express the Coll type
class with a single parameter for the collection type and an associated Elem
type family for the element type:

class Coll c where
type Elem c :: ?
singleton :: Elem c→ c

singleton2 :: (Coll c,Coll (Elem c))⇒ Elem (Elem c)→ c
singleton2 c = singleton (singleton c)

This development means that GHC’s Haskell dialect now supports two similar
features. This is not necessarily problematic for modeling purposes, because
each feature has its notational pros and cons. However, the separate support for
both features gives rise to a lot of complexity in the type checker. While there
has been a lot of speculation about the comparable expressive power of the two
features, no formal comparison has been made. It is still an open engineering
challenge to simplify the type checker by sharing the same infrastructure for
both features.

https://ghc.haskell.org/trac/ghc/ticket/9627

MOTIVATION 171

8.1.6 Our Approach

The three challenges we have outlined above are all symptoms of a common
problem: while we have a formalization of functional dependencies based on
Constraint Handling Rules (Sulzmann et al., 2007b), we lack a formalization
of functional dependencies that captures the functional dependency property
properly within the type system and elaborates the feature into System FC.
The former provides a common ground for comparison with associated type
families.

This chapter provides such a formalization based on the conjecture of Schrijvers
et al. (2007) that functional dependencies can be translated into type families.
In terms of the Coll example this idea means that we replace the functional
dependency annotation (c → e) by a new type family FD and a superclass
constraint (FD c ∼ e) that captures the functional relation between the c and e
parameters.

class FD c ∼ e⇒ Coll c e where
singleton :: e→ c

type FD c :: ?
Moreover, we derive an appropriate FD instance for every Coll instance. For
example, the list instance:

instance Coll [e] e where
singleton x = [x]

gives rise to the type family instance:

type FD [e] = e

Intuitively, this transformation implements an alternative definition of a
functional dependency: a relation R satisfies the functional dependency X → Y ,
where X and Y are attributes of R, iff

∃f : X → Y. ∀(x, y) ∈ R. f(x) = y (8.2)

This chapter addresses the challenges of functional dependencies with a
formalization of the above idea in terms of a fully formal elaboration into
System FC. Our elaboration represents type class dictionaries with GADTs
that hold evidence for the functional dependencies. Unlike for other dictionary
fields, pattern matching to extract this evidence cannot be encapsulated in
projection functions but has to happen at use sites. While GHC already uses
this approach in practice for equalities in class contexts, as far as we know this
approach has never been formalized before.

172 FUNCTIONAL DEPENDENCIES

Figure 8.1 Extension of Figure 6.1 with Functional Dependencies

F ::= 〈type family name〉

cls ::= class ∀ab. π ⇒ TC a | fdm where { f :: σ } class decl.
ins ::= instance ∀ab. π ⇒ TC u where { f = e } instance decl.
fd ::= a1 . . . an → a0 fundep

τ ::= a | T | τ1 τ2 | F(τ) monotype
u ::= a | T | u1 u2 type pattern

φ ::= τ1 ∼ τ2 equality constraint
π ::= TC τ class constraint
Q ::= φ | π type constraint

8.2 Logical Reading of Functional Dependencies

Before presenting our formalization of functional dependencies in the next
section, this section revisits the logical reading of type classes in the presence
of functional dependencies. Class and instance declarations give rise to logical
implications (see Section 5.4.2), which we capture in constraint schemes S .

To aid readability, we first present the extensions functional dependencies
introduce to the source syntax in Section 8.2.1, and defer the logical
interpretation of the class system to Sections 8.2.2 and 8.2.3.

8.2.1 Syntax

The syntax of source programs (pgm), declarations (decl), expressions (e),
qualified types (ρ), polytypes (σ), constraint sets (C), and constraint schemes
(S) remains identical to that of the basic system (Figure 6.1). Thus, we only
focus on the differences, which are concentrated around monotypes, constraints,
and class and instance declarations; Figure 8.1 captures only the syntactic
differences between the basic system of Chapter 6 and a system with functional
dependencies.

Most interesting programs with functional dependencies require multiple
parameters, so the syntax of classes and instances in Figure 8.1 allows for
multiple type arguments. Additionally, class declarations can be decorated
with functional dependencies fd. Functional dependencies take the simple

LOGICAL READING OF FUNCTIONAL DEPENDENCIES 173

form a1 . . . an → a0.3 We also explicitly separate the type variables a that
appear in the class/instance head from type variables b that appear only in the
class/instance context π.

We preserve the stratification found in all HM-based systems of types into
monotypes, qualified types, and polytypes. Nevertheless, we extend monotypes
τ with type family applications F(τ) to capture functionally-dependent types.
Type families are disallowed in the source text; as we illustrate in the rest of
the section, in our formalization each functional dependency gives rise to a type
family declaration.

Since monotypes now include type family applications, their syntax no longer
coincides with type patterns (as it does in most formalization of type classes
found in the literature). Thus, we use different notation for (possibly non-linear)
type patterns u, which appear in instance declaration heads.

Extensions to the syntax of constraints are also presented in Figure 8.1. Class
constraints π take the form TC τ , to reflect the possibility of multi-parameter
type classes. Type constraints Q can be either class constraints or type equality
constraints φ. Again, type equality constraints cannot appear in the source text;
they are introduced by the logical interpretation of functional dependencies.

Finally, as we did for the basic system (Chapter 6), we reduce the notational
burden by omitting all mention of kinds and by assuming that each class has
exactly one method. Additionally, we assume that all type family applications
are fully saturated. In the remainder of the chapter, we denote a type family of
arity n as Fn in cases where the arity is of importance.

8.2.2 Logical Reading of Class Declarations

A class declaration of the form

class ∀ab. π ⇒ TC a | fd1, . . . , fdm where { f :: σ }

gives rise to two kinds of constraint schemes:

Superclass Constraint Schemes

SCπ = ∀a. TC a⇒ θ(π) ∀π ∈ π (CS1a)

where θ = det(a, π) (we explain the meaning of function det below). This
constraint scheme expresses the logical reading of the superclass relation we

3We do not consider multi-range FDs (Sulzmann et al., 2007b) which can be desugared
into simple functional dependencies (Silberschatz et al., 2006).

174 FUNCTIONAL DEPENDENCIES

gave in Section 5.4.2: given a class constraint, we can derive that each of the
superclass constraints is also satisfied. As an example, recall classes Eq and
Ord from Section 5.4.1:

class Eq a where
eq :: a→ a→ Bool

class Eq a⇒ Ord a where
ge :: a→ a→ Bool

The Ord class gives rise to the superclass constraint scheme:

∀a. Ord a⇒ Eq a

As a consequence, we do not have to mention the Eq a constraint explicitly in
the signature of the function gt below. Instead, it can be derived implicitly by
the type-checker from the given Ord a constraint by means of the scheme.

gt :: Ord a⇒ a→ a→ Bool
gt x y = ge x y ∧ not (eq x y)

Indeed, this captures the logical interpretation we gave in Section 5.4.2. Yet,
functional dependencies complicate matters. Consider deriving the superclass
scheme for class D:

class C a b | a→ b
class C a b⇒ D a

By simply selecting the corresponding type in the class context, we get the
following, broken constraint scheme

∀a. D a⇒ C a b

where b is free! The source of this problem is that b is actually existentially
quantified; a more appropriate formulation would be:

∀a. D a⇒ ∃!b. C a b

Our language of constraint schemes, which reflects Haskell’s type system, does
not support top-level existentials though, so such an implication is not directly
expressible within the language. Yet, there is a way to express b in terms of the
in-scope variable a: given that class C comes with a functional dependency, there
exists a function symbol (skolem constant) FC such that FC a ∼ b (according
to Equation 8.2). Hence, we can substitute b with FC a in the above broken
scheme to obtain the valid:

∀a. D a⇒ C a (FC a)

The computation of such a substitution is performed by function det, the formal
description of which we defer until Section 8.3.5.

This example makes apparent why such class declarations have been rejected
by GHC until now: without a way of explicitly expressing b in terms of a, there
is no way to express this relation within the type system.

LOGICAL READING OF FUNCTIONAL DEPENDENCIES 175

Functional Dependency Constraint Schemes Every functional dependency
fdi ≡ ai1 . . . ain → ai0 that accompanies the class corresponds logically to the
following constraint scheme:

SCfdi
= ∀a. TC a⇒ FTCi ai1 . . . ain ∼ ai0 (CS1b)

This constraint scheme directly expresses the functional dependency: given
TC a, we know that there exists a function f such that ai0 = f(ai1 , . . . , ain).
We explicitly give this type-level function for the i-th functional dependency of
class TC the name4 FTCi . For example, our running example Coll gives rise to
one such functional dependency constraint scheme:

∀c. ∀e. Coll c e⇒ FColl1 c ∼ e

Notice how this scheme realizes the first part of the informal transformation
of Schrijvers et al. (2007): if we (notionally) replace the functional dependency
with a superclass equality constraint, then Scheme CS1b is just a special case
of Scheme CS1a.

8.2.3 Logical Reading of Class Instances

A class instance

instance ∀ab. π ⇒ TC u where { f = e }

also yields two kinds of constraint schemes:

Instance Constraint Scheme

SIπ = ∀ab. π ⇒ TC u (CS2a)

This constraint scheme directly expresses the logical reading of the class instance:
“If the context π is satisfied, then (TC u) also holds”. For example, the list instance
of Eq yields the scheme:

∀e. Eq e⇒ Eq [e]

This interpretation directly reflects the interpretation of plain type classes we
gave in Section 5.4.2. Functional dependencies manifest themselves in another
constraint scheme, which we discuss next.

4As a matter of fact, Jones suggested assigning names to functional dependencies as an
interesting extension in his original work (Jones, 2000).

176 FUNCTIONAL DEPENDENCIES

FD Witness Constraint Schemes Every functional dependency fdi ≡
ai1 . . . ain → si0 that accompanies the class also yields a constraint scheme
for the instance:

SIfdi
= ∀ci. FTCi ui1 . . . uin ∼ θ(ui0) (CS2b)

where ci = fv(ui1 , . . . , uin) and θ = det(ci, π). The idea of this constraint
scheme is to (partly) define the function FTCi that witnesses the functional
dependency. The partial definition covers the subset of the domain that is
covered by the class instance. Other instances give rise to schemes that cover
other parts of the function. For example, the following program:

class TC a b | a→ b
instance TC Int Bool
instance TC (Maybe a) a

gives rise to the following FD witness constraint schemes (axioms):

FTC Int ∼ Bool
∀a. FTC (Maybe a) ∼ a

Observe that these schemes are essentially type family instances.

Similarly to the superclass constraint schemes, FD witness constraint schemes
are quite challenging to derive in the general case. At first sight, it seems easy
to determine the right-hand side ui0 : simply take the corresponding parameter
in the instance head. This indeed works for the simple examples above, but
fails in more advanced cases.

Consider deriving the scheme for the following instance:

instance TC a b⇒ TC [a] [b]

Simply selecting the corresponding type in the instance head, gives:

SI′′
fd

= ∀a. FTC [a] ∼ [b]

This equation is broken again, as type variable b is free. What happens here
is that [b] is not determined directly by the other instance argument [a], but
indirectly through the instance context (TC a b). If we apply the FD Constraint
scheme to this instance context, we obtain that (FTC a ∼ b). This equation
allows us to express b in terms of a. If we substitute it into the broken equation
above, we do obtain a valid defining equation:

SI′′
fd

= ∀a. FTC [a] ∼ [FTC a]

TYPE CHECKING 177

Essentially, the FD witness constraint scheme realizes the second part of the
transformation of Schrijvers et al. (2007): for every class instance, we generate
a new type family instance for each functional dependency of the class.

In general, the derivation of a proper defining equation may require an arbitrary
number of such substitution steps. We return to this in Section 8.3.5.

8.3 Type Checking

We now turn to the declarative type system of Haskell with functional
dependencies. Our formalization utilizes the syntax of the basic system we gave
in Figure 6.1 with the extensions of Figure 8.1.

In contrast to the basic system (Chapter 6) and the other two extensions we have
developed (Chapters 7 and 9), for our formalization of functional dependencies
we omit the specification of elaboration into System FC (for reasons we explain
in detail in Section 8.4.4).

To this end, instead of the program theory P, we augment the syntax with the
instance environment I :

I ::= • | I ,S instance environment

The instance environment I is pre-populated by the constraint schemes induced
by the program’s class and instance declarations, and is then extended with
local assumptions (Vytiniotis et al., 2011) when moving under a qualified type.
In essence, the instance environment captures the program theory P without
the dictionary variable annotations.

Since most of the system specification remains identical to that of the basic
system, the remainder of this section introduces only the new judgments, as well
as the changes functional dependencies introduce to the judgments presented in
Section 6.3.

8.3.1 Term Typing

Term typing takes the form I ; Γ T̀M e : σ and is given by the same rules as
relation P; Γ T̀M e : σ t of Section 6.3 (modulo their elaboration-related
aspects). Additionally, relation I ; Γ T̀M e : σ encompasses Rule TmCast:

I ; Γ T̀M e : σ1 I ; Γ |= σ1 ∼ σ2

I ; Γ T̀M e : σ2
TmCast

178 FUNCTIONAL DEPENDENCIES

Essentially, Rule TmCast allows for casting the type of a term e from σ1 to
σ2, as long as the equality of these types can be established. The satisfiability
of the equality constraint is established via the constraint entailment relation
I ; Γ |= S , which is the focus of Section 8.3.3 below.

8.3.2 Type and Constraint Well-formedness

Type Well-formedness Since for the most part types are the same as for the
basic system, we only need to add a new rule to judgment Γ T̀Y σ υ, to
account for type family applications:

Fn defined Γ T̀Y τ
n

Γ T̀Y Fn(τn)
WfFam

Given that we omit kind information, Rule WfFam ensures that all type
arguments are well-formed and that the family application is fully saturated
(by means of index n).

Constraint Well-formedness Well-formedness of constraints takes the form
Γ C̀T Q and is given by the following rules:

Γ T̀Y τ1 Γ T̀Y τ2

Γ C̀T τ1 ∼ τ2
WfEq

TC defined Γ T̀Y τ

Γ C̀T TC τ
WfCls

Rule WfEq ensures that a type equality between types τ1 and τ2 is well-formed
by checking the well-formedness of types τ1 and τ2. Rule WfCls is identical
to that of relation Γ C̀T Q υ (Section 6.3) of the basic system. The only
difference lies in the number of arguments τ .

8.3.3 Constraint Entailment

The constraint entailment relation takes the form I ; Γ |= S and is given by the
rules presented in Figure 8.2. It can be read as “given an instance environment
I and a typing environment Γ, constraint scheme S holds”.

Our system needs to check entailment of both type class and equality constraints,
which is reflected in its rules: Rules Refl, Trans, Sym and Subst constitute
the four standard equality axioms. MP is the modus ponens rule, and Rule Inst
instantiates a constraint scheme with a monotype. Rule Spec is the standard
axiom rule. Like in Jones’ Constructor Classes (Jones, 1993), the entailment
relation I ; Γ |= S is transitive, closed under substitution and monotonic (if
I1; Γ |= S then I1, I2; Γ |= S).

TYPE CHECKING 179

Figure 8.2 Constraint Entailment Specification
I ; Γ |= S Constraint Entailment

I ; Γ |= ∀a. S Γ T̀Y τ

I ; Γ |= [τ/a]S
Inst

Γ T̀Y τ

I ; Γ |= τ ∼ τ
Refl

I ; Γ |= τ2 ∼ τ1

I ; Γ |= τ1 ∼ τ2
Sym

I ; Γ |= τ1 ∼ τ2 I ; Γ |= τ2 ∼ τ3

I ; Γ |= τ1 ∼ τ3
Trans

I ; Γ |= Q ⇒ S I ; Γ |= Q
I ; Γ |= S

MP
S ∈ I

I ; Γ |= S
Spec

I ; Γ |= [τ1/a]Q I ; Γ |= τ1 ∼ τ2

I ; Γ |= [τ2/a]Q
Subst

Figure 8.3 Declaration Typing
I ; Γ C̀LS cls : Ic; Γc Class Declaration Typing

θ = det(a, π) unambig(b, a, π) Γ, a T̀Y σ

fdi ≡ ain → ai0 Ic = [∀a. TC a⇒ θ(π),∀a. TC a⇒ FTCi(ain) ∼ ai0
m

]
Γc = [f : ∀a. TC a⇒ σ]

I ; Γ C̀LS class ∀ab. π ⇒ TC a | fdm where { f :: σ } : Ic; Γc
Cls

Ic; Ii; Γ ÌNS ins : I Instance Declaration Typing

θ = det(a, π) unambig(b, a, π)
(f : ∀a. TC a⇒ σ) ∈ Γ Ic, Ii, π; Γ, a, b T̀M e : [u/a]σ

θi = det(fv(uin), π) fv(θi(ui0)) ⊆ fv(uin) ∀(fdi ≡ ain → ai0)
Ic, Ii, [u/b

′]π; Γ, a, b |= [u/b′]Q ∀(∀b′. TC b′ ⇒ Q) ∈ Ic
I = [∀ai. FTCi(uin) ∼ θi(ui0)

m
,∀a. θ(π)⇒ TC u]

Ic; Ii; Γ ÌNS instance ∀ab. π ⇒ TC u where f = e : I
Ins

8.3.4 Declaration Typing

Declaration typing appears in Figure 8.3 and conservatively extends that of
the basic system (Figure 6.2). Value binding typing (I ; Γ1 V̀AL val : Γ2) and

180 FUNCTIONAL DEPENDENCIES

program typing typing (P̀GM pgm) are identical to those of the basic system so
Figure 8.3 presents only typing for class and instance declarations.

Typing Rules Cls and Ins type check class and instance declarations,
respectively, and give rise to the constraint schemes we presented in Sections 8.2.2
and 8.2.3. Both rules differ from the corresponding rules of the basic system in
two ways:

1. The Liberal Coverage Condition (Sulzmann et al., 2007b, Def. 15) is enforced
by the specification (fv(θi(ui0)) ⊆ fv(uin), where θi = det(fv(uin), π)), rather
than being an additional, external restriction. This design choice is rather
easy to motivate: if the domain of the functional dependency does not
determine (even indirectly, via the context) its own image, then the FD has
no interpretation as a type-level function.

2. The specification does not accept ambiguous class or instance contexts
(unambig(b, a, π)). Predicate unambig is defined as:

unambig(b, a, π) , b ⊆ dom(det(a, π))

For class contexts this restriction ensures the well-formedness of the generated
constraint schemes. Similarly, for instance contexts it ensures coherent
semantics.

8.3.5 Determinacy Relation

The determinacy relation takes the form det(a, π) = θ and can be read as
“Given known type variables a and a set of local class constraints π, substitution
θ maps type variables in π to equivalent types that draw type variables only from
a”.

Formally, we define det(a, π) = θ as a; π D̀ • ! θ, where relation a; π D̀ θ1 θ2
has a single rule:

TC τ ∈ π TC a | ai1 . . . ain → ai0
fv(τi0) 6⊆ a ∪ dom(θ) fv(τi1 , . . . , τin) ⊆ a ∪ dom(θ)
a; π D̀ θ [ProjT

j (FTCi(θ(τi1), . . . , θ(τin)))/fv(τi0)] · θ
StepD

We use the exclamation mark (!) to denote repeated applications of Rule StepD,
until it does not apply anymore. Note that if the superclass declarations of
the program form a Directed Acyclic Graph (DAG), then this procedure is
terminating.5

5Readers familiar with the work of Sulzmann et al. (2007b) will recognize that
dom(det(a, π)) = closure(a, π), where closure(·, ·) as defined in the Refined Weak Coverage

TYPE CHECKING 181

As an example of what the determinacy relation computes, consider the following
example from Sulzmann et al. (2007b):

class G a b | a→ b class F a b | a→ b
class H a b | a→ b instance (G a c,H c b)⇒ F [a] [b]

We compute the set of determined variables det(a, {G a c,H c b}) as follows:

• [FG(a)/c] (from (G a c))
 [FH(FG(a))/b,FG(a)/c] (from (H c b))
6

To illustrate what the projection type functions ProjT
i (·) do, let us consider an

alternative instance for F :

instance (G a (c, Int), H c b)⇒ F [a] [b]

In this case, we can no longer derive c ∼ FG(a) but rather (c, Int) ∼ FG(a). If
we have a type-level function Fst available:

axiom Fst a1 a2 : Fst(a1, a2) ∼ a1

then c can be expressed in terms of a as: c ∼ Fst(FG(a)). In this case,
det(a, {G a (c, Int), H c b}) proceeds as follows:

• [Fst(FG(a))/c] (from (G a (c, Int)))
 [FH(Fst(FG(a)))/b,Fst(FG(a))/c] (from (H c b))
6

In general, a projection function ProjT
i (·) is given by a single axiom

axiom g an : ProjT
i (T a1 . . . an) ∼ ai

As we illustrate in Appendix B.2, there is no need for such projection axioms,
if we equip our system with kind polymorphism (Yorgey et al., 2012). Yet, for
simplicity, we assume in the remainder of this chapter that such projection
functions exist for all data types.

Notice that det(a, π) can be non-deterministic (multiple derivations can exist
for the same variable). For simplicity, we assume for the remainder of this
chapter that it is deterministic, but return to this issue in Section 8.6.
Condition (Sulzmann et al., 2007b, Def. 15). That is, it computes the set of determined
variables of π, along with a “proof” of their determinacy.

182 FUNCTIONAL DEPENDENCIES

8.4 Target Language: System FC

It is clear by now that our logical interpretation of functional dependencies
requires type-level functions and explicit handling of type equalities. Thus, plain
System F is not sufficient to serve as our target language. Additionally, due
to type function clauses being introduced by each class instance, dependently-
typed languages like Agda (Norell, 2007) would not be suitable either: we need
a target language with support for open type functions. Fortunately, such a
calculus already exists and constitutes the topic of this section.

8.4.1 Variants of System FC

System FC is an extension of System F (Girard, 1972; Reynolds, 1974,
1983) with (a) non-syntactic type equality, and (b) open, non-parametric
type functions. System FC has been originally designed by Sulzmann
et al. (2007a) to accommodate a multitude of source-level features including
GADTs (Peyton Jones et al., 2006) and type families (Chakravarty et al.,
2005a,b; Schrijvers et al., 2008) but has also seen a lot of extensions throughout
the years for the accommodation of additional source-level features.6

In the remainder of this section, we present a variant of System FC based on the
original (Sulzmann et al., 2007a), which serves as the target of our elaboration
algorithm in the next section.

System FC conservatively extends System F, so the description we provide in
this section focuses on the extensions with respect to the contents of Sections 5.2
(plain System F) and 6.1 (System F with datatypes and let-bindings). For
a more detailed description of System FC, we urge the reader to consult the
original publication by Sulzmann et al. (2007a).

8.4.2 Syntax and Typing

Types Firstly, System FC extends System F types to capture type function
applications, as well as qualified types. The two new forms are highlighted
below:

υ ::= a | T | υ1 υ2 | ∀a. υ | F(υ) | ψ ⇒ υ type
6For example, the work of Weirich et al. (2011) extends System FC with roles, in order

to address the unsoundness of the calculus described in #1496, the work of Yorgey et al.
(2012) extends System FC with kind polymorphism, and the work of Weirich et al. (2013)
extends System FC with the (in)famous type-in-type axiom. More recently, Weirich et al.
(2017) introduced System DC, an extension of System FC with support for dependent types.

https://ghc.haskell.org/trac/ghc/ticket/1496

TARGET LANGUAGE: SYSTEM FC 183

Similarly to System F, System FC is impredicative so the syntax of types does
not discriminate between monotypes and type schemes (and—in this case—
qualified types). Well-formedness of System FC types takes the same form as
for System F types (Γ T̀Y υ) and the two new forms are handled by the following
two rules:

Fn defined Γ T̀Y υ
n

Γ T̀Y Fn(υn)
TyFam

Γ P̀R ψ Γ T̀Y υ

Γ T̀Y ψ ⇒ υ
TyQual

Rule TyFam handles type family applications, and ensures that (a) the function
symbol is in scope, and that (b) the application is fully saturated (for the reason
behind this design choice see the work of Sulzmann et al. (2007a, Section 3.6)).
Rule TyQual ensures that qualified types of the form (ψ ⇒ υ) are well-formed,
by checking the individual components. Meta-variable ψ represents proposition
types, which we discuss next.

Propositions Proposition types ψ capture (possibly non-syntactic) equalities
between types:

ψ ::= υ1 ∼ υ2 proposition

Well-formedness for propositions (or type equalities) is straightforward; the
judgment takes the form Γ P̀R ψ and is given by a single rule:

Γ T̀Y υ1 Γ T̀Y υ2

Γ P̀R υ1 ∼ υ2
Prop

Just as types classify terms, proposition types are witnessed by coercions.

Coercions Denoted by γ, coercions are evidence terms, encoding the proof
tree for a type equality. A coercion can take any of the following forms:

γ ::= 〈υ〉 | sym γ | left γ | right γ | γ1 o
9 γ2 | ψ ⇒ γ coercion

| F(γ) | ∀a. γ | γ1[γ2] | g υ | ω | γ1@γ2 | γ1 γ2

Reflexivity 〈υ〉, symmetry (sym γ) and transitivity (γ1 o
9 γ2) express that type

equality is an equivalence relation. Syntactic forms F(γ) and (γ1 γ2) capture
injection, while (left γ) and (right γ) capture projection, which follows from
the injectivity of type application. Equality for universally quantified and
qualified types is witnessed by forms ∀a. γ and ψ ⇒ γ, respectively. Similarly,
forms γ1[γ2] and γ1@γ2 witness the equality of type instantiation or coercion
application, respectively.

184 FUNCTIONAL DEPENDENCIES

Additionally, System FC introduces two new symbol classes: coercion variables
and axiom names:

ω ::= 〈coercion variable name〉
g ::= 〈axiom name〉

The former represent local constraints and are introduced by explicit coercion
abstraction or GADT pattern matching. The latter constitute the axiomatic
part of the theory, and are generated from top-level axioms, which correspond
to type family instances, newtype declarations (Peyton Jones, 2003), or, as we
illustrate in Section 8.5.6, type class instances. Of course, typing environments
Γ are extended accordingly:

Γ ::= . . . | Γ, ω : ψ | Γ, g a : F(u) ∼ υ typing environment

The semantics of coercions we gave above is captured in coercion typing Γ C̀O γ : ψ,
which is given in Figure 8.4.

Terms Next, System FC extends System F terms with coercion abstraction
(Λ(ω : ψ). t), coercion application (t γ), and explicit type cast (t . γ). The
complete syntax of terms with the new forms highlighted is given below:

t ::= x | K | Λa. t | t υ | λ(x : υ). t | t1 t2 | Λ(ω : ψ). t term
| t γ | t . γ | case t1 of p → t2 | let x : υ = t1 in t2

Typing for coercion abstraction and application is straightforward and is given
by Rules (⇒Iψ) and (⇒Eψ), respectively:

ω /∈ dom(Γ) Γ P̀R ψ Γ, ω : ψ T̀M t : υ
Γ T̀M Λ(ω : ψ). t : ψ ⇒ υ

(⇒Iψ)

Γ T̀M t : ψ ⇒ υ Γ C̀O γ : ψ
Γ T̀M t γ : υ

(⇒Eψ)

More interesting is Rule TmCast, which handles explicit casts of the form
(t . γ):

Γ T̀M t : υ1 Γ C̀O γ : υ1 ∼ υ2

Γ T̀M t . γ : υ2
TmCast

In simple terms, if a term t has type υ1 and γ is a witness of the equality
υ1 ∼ υ2, then (t . γ) has type υ2.

TARGET LANGUAGE: SYSTEM FC 185

Figure 8.4 Coercion Typing
Γ C̀O γ : ψ Coercion Typing

(ω : ψ) ∈ Γ
Γ C̀O c : ψ

CoVar
(g a : υ1 ∼ υ2) ∈ Γ Γ T̀Y υ

Γ C̀O g υ : [υ/a]υ1 ∼ [υ/a]υ2
CoAx

Γ T̀Y υ

Γ C̀O 〈υ〉 : υ ∼ υ
CoRefl

Γ C̀O γ : υ1 ∼ υ2

Γ C̀O sym γ : υ2 ∼ υ1
CoSym

Γ C̀O γ1 : υ1 ∼ υ2
Γ C̀O γ2 : υ2 ∼ υ3

Γ C̀O γ1 o
9 γ2 : υ1 ∼ υ3

CoTrans

Γ T̀Y υ1 υ3 Γ C̀O γ1 : υ1 ∼ υ2
Γ C̀O γ2 : υ3 ∼ υ4

Γ C̀O γ1 γ2 : υ1 υ3 ∼ υ2 υ4
CoApp

Γ C̀O γ : υ1 υ2 ∼ υ3 υ4

Γ C̀O left γ : υ1 ∼ υ3
CoL

Γ C̀O γ : υ1 υ2 ∼ υ3 υ4

Γ C̀O right γ : υ2 ∼ υ4
CoR

Fn defined Γ C̀O γ : υ1 ∼ υ2
n Γ T̀Y υ1

n

Γ C̀O Fn(γn) : F(υ1
n) ∼ F(υ2

n)
CoFam

Γ, a C̀O γ : υ1 ∼ υ2
Γ, a T̀Y υ1 a /∈ Γ

Γ C̀O ∀a. γ : ∀a. υ1 ∼ ∀a. υ2
CoAll

Γ C̀O γ1 : ∀a. υ1 ∼ ∀a. υ2
Γ C̀O γ2 : υ3 ∼ υ4 Γ T̀Y υ3

Γ C̀O γ1[γ2] : [υ3/a]υ1 ∼ [υ4/a]υ2
CoIns

Γ P̀R ψ Γ C̀O γ : υ1 ∼ υ2

Γ C̀O ψ ⇒ γ : (ψ ⇒ υ1) ∼ (ψ ⇒ υ2)
CoQual

Γ C̀O γ1 : (ψ ⇒ υ1) ∼ (ψ ⇒ υ2) Γ C̀O γ2 : ψ
Γ C̀O γ1@γ2 : υ1 ∼ υ2

CoQInst

Patterns Additionally, System FC patterns include local constraints and
existentially-bound type variables, so that they can accommodate GADTs:

p ::= K b (ω : ψ) (x : υ) pattern

186 FUNCTIONAL DEPENDENCIES

Variables b represent the existentially-quantified type variables of constructor
K (variables that do not appear in K ’s result type). Local constraints ψ
are annotated with coercion variables ω, so that they can be utilized in the
right-hand side of a match for explicit type casting. Finally, term variables
x are explicitly annotated with their types υ; this allows for linear-time type
checking, a highly desirable property for a target language meant to sustain
heavy source-to-source transformations.

Though the judgment for pattern typing (Γ P̀ p → t : υ1 → υ2) is identical to
that for System F (Section 6.1), the rule it is given by is extended to take into
account the additional constructor fields:

(K : ∀ab′. ψ ⇒ υ → T a) ∈ Γ θ = [υa/a, b/b
′]

ω, b /∈ Γ x /∈ dom(Γ) Γ, b, (ω : θ(ψ)), (x : θ(υ)) T̀M t : υ2

Γ P̀ K b (ω : θ(ψ)) (x : θ(υ))→ t : T υa → υ2
Pat

Declarations Lastly, System FC declarations include data type declarations,
type family declarations, top-level equality axioms and value bindings:

decl ::= data T a where { K : υ } datatype declaration
| type F(a) family declaration
| axiom g a : F(u) ∼ υ equality axiom
| let x : υ = t value binding

Datatype declarations are similar to those for System F, the only noticeable
difference being that data constructors are explicitly annotated with their
type (see Section 2.3). Type family declarations are also straightforward and
essentially specify the name of the declared open type family, as well as its
arity (through type arguments a).7 Equality axioms take the form (axiom g a :
F(u) ∼ υ) and are a key element of System FC. Such an axiom axiomatically
declares non-syntactic equality between types F(u) and υ. Type patterns u are
defined just as for the source language:

u ::= a | T | u1 u2 type pattern

Type variables a scope over the equality, and axiom name g can be used
(appropriately instantiated) to explicitly typecast terms. As an example of
type-equality axioms, consider the Peano axioms (Peano, 1889) for addition:

axiom add_zero n : Add (Zero, n) ∼ n
axiom add_succ n m : Add (Succ n,m) ∼ Succ (Add (n,m))

7If we presented kind information, the declaration would also specify its kind.

TARGET LANGUAGE: SYSTEM FC 187

Figure 8.5 Declaration Typing
Γ1 D̀ decl : Γ2 Declaration Typing

υKi ≡ ∀abi. ψi ⇒ υi → T a Γ T̀Y υKi

Γ D̀ (data T a where { K : υK }) : [T ,K : υK]
Data

Γ D̀ (type F(an)) : [Fn]
Family

Γ, a T̀Y ui Γ, a T̀Y υ g /∈ dom(Γ)
Γ D̀ (axiom g a : F(u) ∼ υ) : [g a : F(u) ∼ υ]

Axiom

Γ, x : υ T̀M t : υ x /∈ dom(Γ)
Γ D̀ (let x : υ = t) : [x : υ]

Value

Axiom add_zero states that for any type n type family application Add (Zero, n)
is axiomatically equal to n. Axiom add_succ captures the Succ-case.

Value bindings are standard.

Declaration typing takes the form Γ1 D̀ decl : Γ2 and is given in Figure 8.5. The
judgment for program typing takes the same form as for System F extended
with datatypes (Section 6.1), hence we omit its definition.

8.4.3 Operational Semantics

The operational semantics for System FC are given by relation t1 −→ t2, which
extends the corresponding relation of System F. Since its definition is long
and not very relevant to this thesis, we omit it; it can be found in the work
of Sulzmann et al. (2007a, Section 3.7).

8.4.4 Meta-theoretical Properties

System FC exhibits all meta-theoretical properties of System F we presented in
Section 5.2.2 (apart from strong normalization), and, notably, type safety and
type- and coercion-erasure.

188 FUNCTIONAL DEPENDENCIES

Type Safety Due to System FC’s non-syntactic equality, Sulzmann et al.
(2007a) prove soundness under the assumption that the top-level axioms are
consistent.
Definition 6 (Value Type (Sulzmann et al., 2007a)). A type υ is a value type
if it is of the form (∀a. υ), (ψ ⇒ υ), or (T υ).
Definition 7 (Consistent Typing Environment (Sulzmann et al., 2007a)). A
typing environment Γ is consistent iff:

1. If Γ C̀O γ : (∀a. υ1) ∼ υ2 and υ2 is a value type, then υ2 = (∀a. υ′1).
2. If Γ C̀O γ : (ψ ⇒ υ1) ∼ υ2 and υ2 is a value type, then υ2 = (ψ ⇒ υ′1).
3. If Γ C̀O γ : (T υ) ∼ υ and υ is a value type, then υ = (T υ′).

To our knowledge, the current criterion used by GHC to ensure that typing
environments are consistent is captured in the compatibility relation compat(·, ·),
as defined by Eisenberg et al. (2014):
Definition 8 (Compatibility (Eisenberg et al., 2014)). Two equalities φ1 =
F(u1) ∼ τ1 and φ2 = F(u1) ∼ τ2 are compatible—denoted as compat(φ1, φ2)—
iff unify(u1;u2) = θ implies θ(τ1) = θ(τ2).

In short, we require that whenever the left-hand sides of two top-level equality
axioms overlap, their right-hand sides are equal.

Type and Coercion Erasure The other important property of System FC is
that of type erasure (Theorem 6). That is, the run-time behavior of well-typed
System FC programs is not affected by type or coercion information; both types
and coercions can be safely erased.

Though type and coercion erasure is a much desired property, it motivates the
lack of the elaboration specification of Section 8.3. The specification of constraint
entailment of Figure 8.2 treats equality and class constraints uniformly but
their System FC counterparts belong in different sorts: type equalities φ are
witnessed by coercions γ, whereas class constraints π are witnessed by System
FC terms t.

What’s more, the former are erasable but the latter are not. Thus, a constraint
scheme which has a type equality right-hand side has no erasable System FC
counterpart (in contrast to standard constraint schemes which correspond to
term-level dictionary transformers).

Though this discrepancy can be addressed, we opted for a simpler and shorter
specification; this challenge is addressed in the next section where we discuss
our type inference with elaboration algorithm.

TYPE INFERENCE AND ELABORATION INTO SYSTEM FC 189

8.5 Type Inference and Elaboration into System FC

This section explains how to infer (principal) types for source language programs
with functional dependencies and how to elaborate them into System FC at
the same time. Before presenting the details of the type inference algorithm,
Section 8.5.1 first presents some additional constructs that are used by the
algorithm.

8.5.1 Additional Constructs

During elaboration, we use the following additional constructs.

Type and Evidence Substitutions First, we extend evidence substitutions η
(Section 6.4) to accommodate evidence terms for type equality constraints:

η ::= • | [t/d] · η | [γ/ω] · η evidence substitution

Type substitutions are standard, but to avoid extending all relations with
untouchable variables a (see Section 6.4), for this chapter we explicitly denote
unification variables by Greek letters α and β, and skolem variables by English
letters a and b. Thus, type substitutions take the following form:

θ ::= • | [τ/α] · θ type substitution

Evidence Annotations Additionally, we lift the instance environment I to the
program theory P, by annotating all evidence terms (equalities φ and class
constraints π) with their corresponding System FC evidence variable:

P ::= • | P, g a : F(u) ∼ τ | P, ω : φ | P, d : π | P, d : ∀a. π ⇒ TC u

Notice that dictionary variables d are not associated with constraint schemes
S ; the definition of constraint schemes allows a type equality to appear in
the right-hand side of an implication. Due to the reasons we discussed in
Section 8.4.4, our algorithm treats type equalities differently.

Similarly, we annotate constraints with System FC variables of the corresponding
sort:

E ::= • | E , ω : φ annotated type equalities
Π ::= • | Π, d : π annotated class constraints
Q ::= ω : φ | d : π annotated type constraint
C ::= • | C,Q annotated type constraints

190 FUNCTIONAL DEPENDENCIES

Match Contexts We also introduce match contexts E, that is, nested case
expressions with a hole.

E ::= � | case d of p → E match context

Match contexts are introduced via dictionary destruction, denoted as Π ⇓ E
which we define as follows:

• ⇓ �
Empty

KTC : ∀ab. ψ ⇒ τ → υ → T a

b
′
, ω, d, f fresh θ = [υ′/a, b′/b] d : θ(τ),Π ⇓ E2

E = case da of KTC b
′ (ω : θ(ψ)) (d : θ(τ)) (f : θ(υ))→ E2

(da : TTC υ
′),Π ⇓ E

(⇓)

Dictionary destruction Π ⇓ E recursively pattern matches against class
dictionaries Π in a depth-first fashion, thus exposing all superclass constraints
and FD-induced type equalities. In short, it computes the transitive closure of
the superclass relation.

Throughout the remainder of the chapter, we denote the evidence or typing
bindings introduced by a match context E as PE or ΓE, respectively. Function
binds(E) = Γ; P below illustrates how the bindings can be extracted from a
match context (though we do not show it in the remainder of the chapter, to
avoid additional clutter):

binds(�) = •; •
binds(case d of p → E) = (b, (f : υ),Γ); ((ω : ψ), (d : τ),P)

where p ≡ KTC b (ω : ψ) (d : τ) (f : υ)
Γ; P = binds(E)

8.5.2 Term Elaboration

Figure 8.6 presents type inference and elaboration of terms into System FC.
The judgment takes the form Γ T̀M e : τ t | Π; E . Given a typing environment
Γ and a term e, it computes a set of wanted class constraints Π, a set of pending
equality constraints E , a monotype τ , and a System FC term t.

Compare this judgment to that of the basic system: Γ T̀M e : τ t | C ; E
(Figure 6.3). Since System FC allows for explicit type equality, wanted
equality constraints E are now lifted to coercion-variable-annotated equalities E .
Similarly, wanted class constraints take the more restrictive form Π; all wanted
equality constraints are captured in E .

TYPE INFERENCE AND ELABORATION INTO SYSTEM FC 191

Figure 8.6 Term Elaboration
Γ T̀M e : τ t | Π; E Term Elaboration

(x : ∀a b . π ⇒ τ) ∈ Γ α, d fresh θ = [α/a] ·det(a, π)

Γ T̀M x : θ(τ) x α (θ(b)) d | (d : θ(π)); •
TmVar

Γ, x : α T̀M e : τ t | Π; E α fresh
Γ T̀M λx. e : (α→ τ) λ(x : α). t | Π; E

TmAbs

Γ T̀M e1 : τ1 t1 | Π1; E1 Γ T̀M e2 : τ2 t2 | Π2; E2
α, ω fresh Π = Π1,Π2 E = E1, E2, ω : τ1 ∼ τ2 → α

Γ T̀M e1 e2 : a (t1 . ω) t2 | Π; E
TmApp

Γ, x : α T̀M e1 : τ1 t1 | Π1; E1 Γ, x : τ1 T̀M e2 : τ2 t2 | Π2; E2
α, ω fresh Π = Π1,Π2 E = E1, E2, ω : α ∼ τ1

Γ T̀M (let x = e1 in e2) : τ2 (let x : elabTY(τ1) = t1 in t2) | Π; E
TmLet

The differences between the rules of Figure 8.6 with the corresponding rules of
the basic system (Figure 6.3) are highlighted.

The most interesting rule is TmVar, which handles variables. We denote by
a the type variables that appear in τ , and by b the ones that appear only
in the context π. The rule introduces wanted class constraints, appropriately
instantiated with fresh unification and dictionary variables.

Notice that, unlike a, variables b are not instantiated with fresh unification
variables. Instead, we use the determinacy relation to express them in terms of
a. For example, given class D a b | a → b, and (x : D a b ⇒ a → a) ∈ Γ, we
infer for x type α→ α, giving rise to the wanted constraint D α (FD α).

This treatment of b allows the unification algorithm of the next section to
indirectly refine the non-parametric parameters of class constraints. Of course,
this requires that x’s signature is unambiguous, an issue we return to in
Section 8.6.

Rule TmAbs is entirely standard.

Rule TmApp handles term applications (e1 e2). In addition to the constraints
introduced by each subterm, we also require that (τ1 ∼ τ2 → α), like all HM(X)-
based systems. In order to ensure that the elaborated term is well-typed, we

192 FUNCTIONAL DEPENDENCIES

explicitly cast e1 with ω, which serves as a placeholder for the equality proof
computed by the constraint entailment relation (Section 8.5.5).

Rule TmLet handles (possibly recursive) let bindings. The only difference
between the rule and the corresponding one for the basic system is concentrated
in coercion variable ω, which captures the requirement that x has a single type
(but is otherwise ignored).

8.5.3 Type, Constraint, and Environment Elaboration

Constraint Elaboration Since equalities and class constraints correspond to
different System FC syntactic sorts, constraint elaboration is performed by two
separate relations. First, class constraints π are elaborated into dictionary types,
via function elabCC(π) = υ, given by the following clause:

elabCC(TC τ) = TTC elabTY(τ)

Second, type equalities φ are elaborated into System FC proposition types ψ,
via function elabEQ(φ) = ψ, given by the following clause:

elabEQ(τ1 ∼ τ2) = elabTY(τ1) ∼ elabTY(τ2)

Type Elaboration Elaboration of types is given by function elabTY(σ) = υ.
Since System FC types conservatively extend System F types, we only present
the clauses which handle the new syntactic forms:

elabTY(Fn(τn)) = Fn(elabTY(τ)n)
elabTY(φ⇒ π ⇒ τ) = elabEQ(φ)⇒ elabCC(π)→ elabTY(τ)

First, the elaboration of a type family application is straightforward. Second,
since the order of constraints in a qualified type given in prenex normal form is
irrelevant, the last clause of elabTY(·) handles qualified types in an uncurried way.
Hence, a type in prenex normal form in the source language gets translated
into a System FC type in prenex normal form (otherwise, the elaboration can
result in higher-rank types where qualification can appear in nested positions).

Environment Elaboration Finally, in order to state the correctness of our
algorithm in Section 8.6, we define environment elaboration functions elabPT(P) =
Γ′ and elabTE(Γ) = Γ′, which translate source-level environments (program theory
P and typing environment Γ, respectively) into System FC typing environments

TYPE INFERENCE AND ELABORATION INTO SYSTEM FC 193

Γ′. Both definitions are straightforward. The former is given by the following
clauses:

elabPT(•) = •
elabPT(P, g a : F(u) ∼ τ) = elabPT(P), g a : F(u) ∼ elabTY(τ)
elabPT(P, ω : φ) = elabPT(P), ω : elabEQ(φ)
elabPT(P, d : π) = elabPT(P), d : elabCC(π)
elabPT(P, d : ∀a. π ⇒ TC u) = elabPT(P), d : ∀a. elabCC(π)→ TTC u

The latter is identical to that of the basic system and is hence omitted.

8.5.4 Type Unification

We now turn to type unification in the presence of functional dependencies.

Type Reduction Judgment P R̀ τ τ ′; γ defines a (single-step) type reduction
relation on monotypes, specified by the following rules.

P R̀ τ1 τ ′1; γ
P R̀ τ1 τ2 τ ′1 τ2; γ 〈τ2〉

LeftR
P R̀ τ2 τ ′2; γ

P R̀ τ1 τ2 τ1 τ
′
2; 〈τ1〉 γ

RightR

P R̀ τi τ ′i ; γi τ ′j = τj ,∀j 6= i

P R̀ F(τn) F(τ ′n); F(〈τ1〉, · · · γi, · · · 〈τn〉)
ArgR

(g a : F(u) ∼ τ) ∈ P
P R̀ [τ/a]F(u) [τ/a]τ ; g τ

AxiomR

We perform type reduction under program theory P, such that Rule AxiomR

can expand type family applications when an appropriate axiom matches. We
also annotate the reduction with a coercion γ, which witnesses the equality
τ ∼ τ ′, as is required by the unification relation which we discuss next. Type
reduction is sound, which can be proven by straightforward induction on the
type reduction derivation:

Lemma 1 (Soundness of Type Reduction). If Γ T̀Y τ1 and P R̀ τ1 τ2; γ,
then elabTE(Γ), elabPT(P) C̀O γ : elabTY(τ1) ∼ elabTY(τ2).

194 FUNCTIONAL DEPENDENCIES

Type Unification Type reduction is used by the single-step unification relation
P Ù ω : τ1 ∼ τ2 E ; θ; η, which is given by the following rules:

P Ù ω : τ ∼ τ •; •; [〈τ〉/ω]
ReflU

P Ù ω
′ : τ2 ∼ τ1 E ; θ; η ω′ fresh

P Ù ω : τ1 ∼ τ2 E ; θ; η · [sym ω′/ω]
SymU

α /∈ fv(τ)
P Ù ω : α ∼ τ •; [τ/α]; [〈τ〉/ω]

VarU

P R̀ F(τ) τ2; γ ω′ fresh
P Ù ω : F(τ) ∼ τ1 {ω′ : τ2 ∼ τ1}; •; [γ o

9 ω
′/ω]

RedU

ω1, ω2 fresh γ = ω1 ω2

P Ù ω : τ1 τ2 ∼ τ ′1 τ
′
2 {ω1 : τ1 ∼ τ ′1, ω2 : τ2 ∼ τ ′2}; •; [γ/ω]

AppU

In short, the judgment holds for an equality τ1 ∼ τ2 iff the unification problem
can be reduced to a simpler unification problem for the set of equality constraints
E and type substitution θ. Since in our target language casting needs explicit
equality proofs, we also accumulate an evidence substitution η, which explains
how evidence for E can be turned into evidence for τ1 ∼ τ2.

8.5.5 Constraint Entailment

Single-step constraint entailment takes the form P È Q C; θ; η and simplifies
a constraint Q to a set of simpler constraints C and a type substitution θ.
Additionally, it computes an evidence substitution η, which maps evidence
variables (coercion or dictionary variables) to evidence terms composed by the
simpler evidence. The relation is given in Figure 8.7.

Our system needs to handle both class and equality constraints, which is reflected
in the rules: Rule ClsE formalizes the standard SLD resolution (backwards
chaining), Rule EqE performs single-step unification on equality constraints,
and Rule RedE allows for type reduction on class parameters.

TYPE INFERENCE AND ELABORATION INTO SYSTEM FC 195

Figure 8.7 Constraint Entailment
P È Q C ; θ; η Constraint Entailment (Single-step)

(d′ : ∀a. π ⇒ TC u) ∈ P d fresh
P È d : [τ/a](TC u) (d : [τ/a]π); •; [d′ τ d/d]

ClsE

P Ù ω : τ1 ∼ τ2 E ; θ; η
P È ω : τ1 ∼ τ2 E ; θ; η

EqE

P R̀ τi τ ′i ; γi ∀i ∈ [1 . . . n] d′ fresh
P È (d : TC τn) (d′ : TC τ ′n); •; [d′ . TTC sym γi

n/d]
RedE

By repeatedly applying single-step constraint entailment, we obtain the reflexive
and transitive closure P È C ∗ C; θ; η:

P È C ∗ C; •; •
StopE

P È Q C1; θ1; η1 P È θ1(C), C1
∗ C2; θ2; η2

P È C,Q ∗ C2; (θ2 · θ1); (η2 · η1)
StepE

We denote the case when C cannot be further reduced as P È C ! C′; θ; η. To
ensure that type inference is decidable, it is essential that constraint entailment
is terminating; Section 8.6 provides sufficient conditions.

8.5.6 Declaration Elaboration

Finally, we now turn to type inference and elaboration of top-level declarations.
Only elaboration of class and instance declarations is given. Value typing is
given by judgment P; Γ V̀AL val : Γv decl and its definition is straightforward;
it is given in Appendix B.3.

Elaboration of Class Declarations

Class elaboration takes the form Γ C̀LS cls decl | Γc and is given by a single
rule, Rule Cls (Figure 8.8).

The encoding of a class constraint in System FC is that of a GADT-
dictionary (Peyton Jones et al., 2006), such that we can store existentially

196 FUNCTIONAL DEPENDENCIES

Figure 8.8 Class Declaration Elaboration

Γ C̀LS cls decl | Γc Class Elaboration

unambig(b, a, π) Γ, a T̀Y σ υ Γ, a, b C̀C π τ
ψi = FTCi(ain) ∼ ai0 fdi ≡ ain → ai0 Γc = [f : ∀a. TC a⇒ σ]

decl1 = data TTC a where { KTC : ∀ab. ψ ⇒ τ → υ → TTC a }
decl2 = type FTCi a

in
m

decl3 = f = Λa. λ(d : TTC a). case d of { KTC b ω d x→ x }

Γ C̀LS class ∀ab. π ⇒ TC a | fdm where f :: σ [decl1, decl2, decl3] | Γc
Cls

quantified variables b, as well as the local constraints ψi, each corresponding to
a functional dependency annotation.

In contrast to earlier formalizations of type classes, checking a class declaration
does not give rise to a direct extension of the program theory. While
Equation CS1a may have a direct interpretation as a System FC term,
Equation CS1b does not: System FC does not support functions that return
coercions; this would not be compatible with System FC’s coercion erasure and
a call-by-need semantics.

Instead, both schemes can be uniformly elaborated as match contexts. For
example, the following match context corresponds to the logical implication
Ord a⇒ Eq a:

E = case dOrd of { KOrd dEq f → � }

We reject unconditionally ambiguous class declarations, via restriction
unambig(b, a, π).

Elaboration of Class Instances

Instance elaboration takes the form P; Γ ÌNS ins decl |Pi and appears in
Figure 8.9. An instance declaration ins is elaborated to System FC declarations
decl and gives rise to the program theory extension Pi. To aid readability, we
formalize instance elaboration by means of the following auxiliary relations:

Axiom Generation As we explained in Section 8.2.3, each class instance gives
rise to a type family axiom for every functional dependency of the class. This
semantics is reflected in Equation CS2b, and directly corresponds to axioms

TYPE INFERENCE AND ELABORATION INTO SYSTEM FC 197

Figure 8.9 Class Instance Elaboration

P; Γ ÌNS ins decl | Pi Instance Elaboration

unambig(b, a, π) (d : π) ⇓ E dI , d fresh
PI = P,Pax , d : π,PE ΓI = Γ, a, b,ΓE SI = ∀ab. π ⇒ TC u

Γ, a, b C̀C π τ
(f : ∀a′. TC a′ ⇒ σ) ∈ Γ PI , dI : SI ; ΓI T̀M e : [u/a′]σ t

SI ↪→ Pax PI S̀C TC u (τ b, td, γc) Pi = Pax , dI : ∀ab. π ⇒ TC u
decl1 = axiom Pax
decl2 = let dI = Λab. λ(d : τ). E[KTC τ b td γc t]

P; Γ ÌNS instance ∀ab. π ⇒ TC u where f = e [decl1, decl2] | Pi
Ins

Pax , as produced by relation:

(fdi ≡ ain → ai0) ∈ (fdm ∈ TC)
θi = det(fv(uin), π) fv(θi(ui0)) ⊆ fv(uin) g fresh
(∀ab. π ⇒ TC u) ↪→ gi (fv(uin)) : FTCi(uin) ∼ θi(ui0)

m AxGen

Premise fv(θi(ui0)) ⊆ fv(uin) ensures that the generated axioms are well-formed;
like the Liberal Coverage Condition (Sulzmann et al., 2007b) it checks that the
image of every functional dependency is determined by its domain.

Method Translation & Type Subsumption Since method implementations
are in effect explicitly typed, we need a procedure for deciding type subsumption.
We say that a polytype σ1 subsumes polytype σ2, if any expression that can
be assigned type σ1 can also be assigned type σ2. Since we elaborate during
inference, we perform type inference and the subsumption check simultaneously,
by means of relation P; Γ T̀M e : σ t, which is given by rule:

Γ T̀M e : τ1 t | Π; E Γ T̀Y (∀a. π ⇒ τ2) Γ C̀C π τ

ω, d fresh (d : π) ⇓ E P, (d : π),PE È Π, E , (ω : τ1 ∼ τ2) ! •; θ; η
P; Γ T̀M e : (∀a. π ⇒ τ2) Λa. λ(d : τ). E[η(θ(t . ω))]

(�)

In short, from the assumption π we need to be able to completely derive all
constraints that arise from typing e and the equality (τ1 ∼ τ2). We locally
extend the program theory with the transitive closure of the superclass relation
on π, thus exposing both superclass dictionaries and FD constraints induced by
π.

198 FUNCTIONAL DEPENDENCIES

Superclass Entailment Furthermore, we need to ensure that the instance
context π (along with the newly created axioms Pax) completely entails
the superclass and FD constraints. This procedure is captured by relation
Pinst S̀C (TC u) (τ , t, γ):

class ∀ab. π ⇒ TC a | fdm ω, d fresh θ = [u/a] · det(a, π)
Pinst È (d : θ(π)), (ω : θ(FTCi(ain) ∼ ai0)) ! •; θs; ηs

Pinst S̀C (TC u) (θs(θ(b)), ηs(d), ηs(ω))
SC

Notice that the relation also computes the existential types introduced in the
superclass context θs(θ(b)), which should also be stored in the resulting GADT
dictionary.

Instance Elaboration Finally, Rule Instance utilizes the above relations to
produce the dictionary transformer dI , which reflects the Instance Constraint
Scheme (Equation CS2a).

Since we do not encode the superclass relation using constraint schemes but via
match contexts, both the method elaboration and the superclass entailment are
performed under environment Pall , which includes not only the instance context
π and axioms Pax , but also the transitive closure of the superclass relation P ′,
obtained by exhaustively destructing assumptions π.

8.6 Meta-theory

This section considers the key meta-theoretical properties of both the type
system and the type inference and elaboration algorithm.

8.6.1 Termination of Type Inference

First, we consider termination of type inference. In order to ensure that the
algorithm of Section 8.5 is terminating, we extend the termination conditions
of Section 6.5 accordingly:

(a) The superclass relation forms a directed acyclic graph (DAG).

(b) In each class instance (instance ∀ab. π ⇒ TC u):

• no variable has more occurrences in a type class constraint π than the
head (TC u), and

META-THEORY 199

• each class constraint π in the context π has fewer constructors and
variables (taken together, counting repetitions) than the head (TC u).

(c) For every generated axiom (g a : F(u) ∼ τ), in every subterm (F1(τ1) ⊆ τ):

• there is no subterm (F2(τ2) ⊆ F1(τ1)),
• the sum of the number of type constructors and type variables is

smaller than the corresponding number in u, and
• there are not more occurrences of any variable a than in u.

In essence, restrictions (a) and (b) are exactly the same as for the basic system,
but they are extended to account for multi-parameter type classes.

The first restriction ensures that relations det(a, π) and (Π ⇓ E) terminate,
since they both compute the transitive closure of the superclass relation.

The second restriction ensures that instance contexts are decreasing, so that
class resolution (Rules ClsE and Rules RedE) is also terminating, given that
the type equality axioms are strongly normalizing.

Lastly, the third restriction (borrowed from Schrijvers et al. (2008, Def. 5))
ensures that the generated axioms are strongly normalizing, that is, confluent
and terminating, which allows us to turn constraint entailment (Section 8.5.5)
into a deterministic function.

Conjecture 1 (Termination of Type Inference). If a program satisfies the
Termination Conditions, then type inference terminates.

8.6.2 Functional Dependency Property

There are two important properties that regulate the functional dependency
property.

Compatibility Firstly, we need to make sure that there are no two conflicting
definitions that associate two different values with the same key. To this end,
we impose the Compatibility Condition:

Definition 9 (Compatibility Condition). Let there be a class declaration and
any pair of instance declarations for that class:

class ∀ab. π ⇒ TC a | fd1, . . . , fdm where f :: σ
instance ∀a1b1. π1 ⇒ TC u1 where f = e1
instance ∀a2b2. π2 ⇒ TC u2 where f = e2

200 FUNCTIONAL DEPENDENCIES

Then, for each functional dependency fdi ≡ ai1 , . . . , ain → ai0 the following
should hold:

compat(FTCi(uin1) ∼ θi1(ui01),FTCi(uin2) ∼ θi2(ui02))

where θi1 = det(fv(uin1), π1) and θi2 = det(fv(uin2), π2).

Relation compat(·, ·) is the compatibility relation, as defined by Eisenberg et al.
(2014):
Definition 10 (Compatibility). Two equalities φ1 = F(u1) ∼ τ1 and φ2 =
F(u1) ∼ τ2 are compatible—denoted as compat(φ1, φ2)—iff unify(u1;u2) = θ
implies θ(τ1) = θ(τ2).

In the nomenclature of Jones (2000, Section 6.1) and Sulzmann et al. (2007b,
Def. 6–8) compatibility is known as consistency. Both works impose a very
conservative consistency condition, which requires, for any two instance heads
(TC u1) and (TC u2) and any functional dependency fdi ≡ ain → ai0 of class
TC, that θ(ui01) = θ(ui02) if unify(uin1 ;uin2) = θ. This means that the function
is fully determined by the instance head, and cannot depend on the instance
context. The latter is supported by our more liberal Compatibility Condition,
which meets Challenge 1 of Section 8.1.3, by providing a criterion to verify the
consistency of more liberal instances.

Notice that both Jones and Sulzmann et al. consider an additional property,
coverage, which stipulates that the image of every functional dependency
instance is fully determined by its domain. Jones enforces this property through
a conservative condition, while Sulzmann et al. consider the more liberal
Liberal Coverage Condition (Sulzmann et al., 2007b, Def. 15) which also takes
the instance context into account. Our system does not require an external
coverage condition as it already internalizes coverage in the determinacy relation
(Section 8.3.5).

Unambiguous Witness Functions Secondly, we need to make sure that the
function that witnesses the functional dependency is uniquely determined. For
this reason, we impose the Unambiguous Witness Condition.
Definition 11 (Unambiguous Witness Condition). Let there be a class
declaration and any instance for that class:

class ∀ab. π ⇒ TC a | fdm where f :: σ
instance ∀a′b′. π′ ⇒ TC u where f = e

Then, for each functional dependency fdi ≡ ain → ai0 it is required that
det(fv(uin), π′) is unambiguous on fv(ui0).

META-THEORY 201

A witness derivation det(a, π) = θ is unambiguous on type variables b iff
b ⊆ dom(θ) and θ(b) is independent of the order in which relation a; π D̀ θ1 θ2
selects class constraints π from π.

To see why this condition is important, consider for example the following
declarations:

class C1 a b | a→ b class C a b | a→ b
class C2 a b | a→ b instance (C1 a b, C2 a b)⇒ C [a] [b]

What axiom should the C instance give rise to? Using the instance context
(C1 a b, C2 a b), we can derive either of the two:

axiom g1 a : FC a ∼ [FC1 a]
axiom g2 a : FC a ∼ [FC2 a]

Yet, depending on the choice, different programs are accepted. For example,
from the given constraints {C1 a b, C2 a c, C [a] [b]} we can derive (b ∼ c) if g1
is available; the same does not hold for g2.

Even worse, the choice of the axiom affects the compatibility of the instance
with other instances for the same class. To support modular compilation, we
cannot optimize the choice by taking the rest of the program into account.

For these reasons, our Unambiguous Witness Condition rejects programs with
such ambiguity. Another solution would be for the programmer to manually
resolve the ambiguity by expressing a preference.

8.6.3 Type Substitution Property

We believe that our system satisfies the type substitution property.

Conjecture 2. If I ; Γ T̀M e : ∀a. σ and Γ T̀Y τ , then I ; Γ T̀M e : [τ/a]σ.

In short, a type system satisfies the type substitution property iff typing a term
e with type ∀a. σ implies that we can also type it with the instantiated type
[τ/a]σ.

Chakravarty et al. (2005a) used the following example to compare three systems
(the system implemented by the Hugs compiler, the system implemented by
GHC, and a system designed by Stuckey and Sulzmann (2005)) with respect to
whether they satisfy this property.

class C a b | a→ b where { foo :: a→ b }
instance C Bool Int where { foo = . . . }

202 FUNCTIONAL DEPENDENCIES

Three possible signatures for function bar are:

bar :: C a b⇒ a → b (1: most general type)
bar :: C Bool b⇒ Bool → b (2: substitution instance)
bar :: Bool → Int (3: apply the fd)
bar = foo

All three signatures are accepted by the system of Stuckey and Sulzmann, which
is based on Constraint Handling Rules. Yet, signature (2) is rejected by both
GHC and Hugs, which use a dictionary-based translation to an explicitly-typed
language based on System F. Our system accepts all three signatures.

As far as we know, our system is the first with functional dependencies to
satisfy the type substitution property, while translating to a typed intermediate
language. In the future, we would like to formally verify this expectation.

8.6.4 Algorithm Soundness

“The worst form of inequality is to try to make unequal things equal.”

—Aristotle

The algorithm performs two tasks at once: type inference and elaboration into
System FC. We conjecture that it is sound on both accounts.

Firstly, the type inference task is sound.

Conjecture 3 (Soundness of Type Inference). If P̀GM pgm decl, then P̀GM pgm.

Secondly, the elaboration produces well-typed System FC code.

Conjecture 4 (Preservation of Typeability Under Elaboration). If P̀GM pgm decl,
then P̀GM decl.

Moreover, to be type safe, System FC requires the consistency of the axiomatic
equational theory. This property follows from the Compatibility Condition:

Theorem 14 (Consistency of Elaborated Programs). If pgm satisfies the
Compatibility Condition and P̀GM pgm decl, then the top-level typing
environment of decl is consistent (according to the definition of System FC
consistency (Sulzmann et al., 2007a)).

META-THEORY 203

8.6.5 Ambiguity

Following the Haskell tradition, we also require that ambiguous type signatures
are rejected, since the run-time behavior of terms that inhabit them is not
well-specified. Checking signatures for ambiguity is straightforward:
Conjecture 5 (Non-ambiguous Types). Let there be a (well-scoped) type σ =
∀a. π ⇒ τ . If fv(π) ⊆ dom(det(fixed(τ), π)) ∪ fixed(τ), then σ is unambiguous.

Function fixed(·) computes the set of fixed variables of a monotype:

fixed(a) = {a} fixed(τ1 τ2) = fixed(τ1) ∪ fixed(τ2)
fixed(T) = ∅ fixed(F(τ)) = ∅

Intuitively, all type variables appearing in the context π should be determined
from the monotype τ , either by directly appearing in τ , or indirectly via a
functional dependency (or a chain of them). For instance, given the class
declaration class C a b | a→ b we conclude that signature C a b⇒ a→ a is
unambiguous because type variable b is functionally determined by a.

8.6.6 Principality of Types

Furthermore, we conjecture that the specification of Section 8.3 has the principal
type property:
Conjecture 6 (Principal Types). If e is well-typed, then there exists a type σ0
(the principal type), such that I ; Γ T̀M e : σ0 and, for all σ such that I ; Γ T̀M e : σ,
we have that I ; Γ |= σ0 � σ.

Here relation I ; Γ |= σ0 � σ defines type subsumption:

I , [τ/b]π2; Γ |= π1, τ1 ∼ [τ/b]τ2 Γ T̀Y τ

I ; Γ |= (∀a. π1 ⇒ τ1) � (∀b. π2 ⇒ τ2)
(�)

Moreover, without introducing further formal notation, we state our expectation
that type inference derives the principal type:
Conjecture 7 (Inference Computes Principal Types). The type inference of
Section 8.5 computes only principal types.

8.6.7 Coherence

To ensure that elaboration is coherent in the presence of type classes with
functional dependencies, we require the same conditions as for the basic system:

204 FUNCTIONAL DEPENDENCIES

non-overlapping instances (Definition 3), and non-ambiguous types (Definition 4).
We generalize the first condition to account for multiple class parameters:

Definition 12 (Non-overlapping Instances). Any two instance heads (TC u1)
and (TC u2) for the same class should not overlap (@θ. θ(u1) = θ(u2)).

The second condition should also be generalized, to account for existentially-
quantified type variables that can be introduced by functional dependencies.
Hence, instead of the simple unambiguous condition for type classes (predicate
unamb(·) in Definition 4), in our definition of non-ambiguous types we require the
generalized condition unambig(b, a, π) (see Section 8.3.4). Since this condition is
already enforced by the specification of Section 8.3, the only external condition
we require is Definition 12.

8.6.8 Completeness

Finally, we conjecture that our algorithm is complete with respect to the
declarative type system for programs that satisfy the Termination and
Unambiguous Witness Conditions.

8.7 Related Work

Functional Dependencies Functional dependencies were introduced in Haskell’s
class system by Jones (2000), and its first sound and decidable type inference
has been given by Duck et al. (2004). Follow-up work by Sulzmann et al.
(2007b) formalized functional dependencies in terms of Constraint Handling
Rules (Frühwirth, 1995), and thoroughly studied several extensions, including
multi-range functional dependencies and weakened variants of the coverage
condition.

Non-Functional Improvement Our work treats functional dependencies as
type-level functions, as originally intended by Jones (2000). Alternatively, one
can view functional dependencies as a more general mechanism for guiding
type inference, e.g., as asked for in GHC feature request #8634. Under this
interpretation, the domain of a functional dependency does not necessarily
determine its image; the result can also be partially determined. This fits with
Jones’ more general theory of improvement (Jones, 1995c). A flexible system
for improvement was presented by Stuckey and Sulzmann (2005), where the
programmer can extend type inference, including partial improvements, directly

https://ghc.haskell.org/trac/ghc/ticket/8634

SCIENTIFIC OUTPUT 205

through Constraint Handling Rules. It is an open question how to integrate
this approach with a typed intermediate language.

Type Families Functional Dependencies are most closely related to associated
type synonyms (Chakravarty et al., 2005a; Schrijvers et al., 2007, 2008) and our
formalization is based on theirs. This enables a more direct comparison and
integration of both features in future work.

Our Compatibility Condition is based on that of Eisenberg et al. (2014) for
open type families, which relaxes the non-overlapping check of Schrijvers et al.
(2008).

Injective Associated Type Synonyms Stolarek et al. (2015) proposed
injectivity annotations for type families, which closely resemble functional
dependencies in both syntax and semantics: to indicate that a type family with
result type b is injective in the i-th argument ai a user can add an annotation
b→ ai. They introduce a new System FC coercion form to witness injectivity.
Our elaboration does not need this new form, as the type class dictionary serves
to hold the witness; this approach could be used for the injectivity of associated
type synonyms too.

Expanding on an earlier sketch by Schrijvers and Sulzmann (2008), Serrano
et al. (2015) discuss an approach for elaborating type classes into type families
augmented with dictionaries. They use injectivity annotations to elaborate
functional dependencies.

8.8 Scientific Output

The material found in this chapter is drawn from the following publication:

Georgios Karachalias and Tom Schrijvers (2017). Elaboration on
Functional Dependencies: Functional Dependencies Are Dead, Long Live
Functional Dependencies! In Proceedings of the 10th ACM SIGPLAN
International Symposium on Haskell, Haskell ’17, pp. 133–147, Oxford,
UK, September 7–8, 2017.

This work has tackled a number of important open challenges concerning
functional dependencies. Firstly, we summarize the shortcoming in the treatment
of functional dependencies. We address these shortcomings by providing a
formalization of functional dependencies that explicitly reconstructs the implicit

206 FUNCTIONAL DEPENDENCIES

type-level function that witnesses each functional dependency. Alongside the
declarative type system, we develop a type inference algorithm with evidence
translation from source terms to System FC that is faithful to our type system
specification. Furthermore, our algorithm uses the same building blocks as that
of associated type synonyms, which makes us confident that our work enables
the proper integration of functional dependencies in Haskell’s eco-system of
advanced type-level features, an aspiration we return to in Section 10.3.2. Lastly,
our work takes a significant step towards answering a long-standing question of
whether functional dependencies and (associated) type families have the same
expressive power: by elaborating functional dependencies into type families and
type equalities, we essentially show that the latter subsume the former. Proving
(or disproving) the other direction remains an open question to be answered in
the future.

Chapter 9

Bidirectional Instances

Finally, in this chapter we present the third and last type class extension we
have developed: Bidirectional Instances.

The chapter is structured as follows: Section 9.1 motivates the development
of bidirectional instances and presents their intended semantics. Section 9.2
discusses the challenges that arose during the development of the feature, as
well as the design choices we have made to address them. Section 9.3 formalizes
the differences between the specification of the basic system we presented in
Section 6.3 and a system extended with bidirectional instances, as well as the
changes bidirectional instances introduce to the inference (and elaboration)
algorithm of the basic system (Section 6.4). Finally, Section 9.4 covers the meta-
theoretical properties of bidirectional instances and Section 9.5 summarizes the
main outcomes of this work.

9.1 Motivation

9.1.1 Structural Induction Over Indexed Data Types

Ever since GADTs were introduced in Haskell (Peyton Jones et al., 2006),
they have been put to good use by programmers for dataflow analysis and
optimization (Ramsey et al., 2010), accelerated array processing,1 automatic

1https://hackage.haskell.org/package/accelerate

207

https://hackage.haskell.org/package/accelerate

208 BIDIRECTIONAL INSTANCES

differentiation,2 and more beyond.3 Yet, their interaction with existing features
such as type classes (Wadler and Blott, 1989) and functional dependencies (Jones,
2000) has a lot of room for improvement.

For example, consider (a simplified version of) the Term datatype, as given
by Johann and Ghani (2008):

data Term :: ?→ ? where
Con :: a→ Term a
Tup :: Term a→ Term b→ Term (a, b)

Datatype Term encodes a simple expression language, with constants
(constructed by data constructor Con) and tuples (constructed by data
constructor Tup).

Making (Term a) an instance of even the simplest of type classes can be
challenging. For example, the following straightforward instance is not typeable
under the current specification of type classes:

instance Show a⇒ Show (Term a) where
show (Con x) = show x
show (Tup x y) = unwords ["(", show x, ",", show y, ")"]

Loading the above program into ghci emits the following error(s):

Bidirectional.hs:14:33:
Could not deduce (Show b) arising from a use of ‘show’
from the context (Show a) or from (a ~ (b, c))

Bidirectional.hs:14:44:
Could not deduce (Show c) arising from a use of ‘show’
from the context (Show a) or from (a ~ (b, c))

As the message indicates, the source of the errors is the recursive calls to show
in the second clause: the instance context (Show a) and the local constraint
(exposed via GADT pattern matching) a ∼ (b, c) are not sufficient to prove
(Show b) and (Show c), as is required by the recursive calls to show. In summary,
the type system cannot derive the following implications:

∀b. ∀c. Show (b, c) ⇒ Show b
∀b. ∀c. Show (b, c) ⇒ Show c

2https://hackage.haskell.org/package/ad
3Fun fact: despite the current popularity of GADTs, they were first introduced in an

unpublished draft by Augustsson and Petersson (1994), under the name of “silly type families”.

https://hackage.haskell.org/package/ad

MOTIVATION 209

The Problem Both implications above constitute the inversion of the
implication derived by the predefined Show instance for tuples:

instance (Show b,Show c)⇒ Show (b, c) where { . . . }

Indeed, as we discussed earlier in Sections 5.4.2 and 5.4.3, both the logical and
the constructive interpretation of type classes in most4 existing system is not
bidirectional: the system can only derive Show (b, c) from (Show b,Show c), but
not the other way around.

9.1.2 Functional Dependencies and Associated Type Families

Unfortunately, the lack of bidirectionality of type class instances does not affect
only the expressive power of simple type classes, but also the expressive power of
a multitude of features based on them, such as functional dependencies (Jones,
2000) and associated type families (Chakravarty et al., 2005a).

For example, let us consider an example of type-level programming using
functional dependencies.5 Recall the definition of type-level natural numbers
and length-indexed vectors we gave in Section 2.3:

data Nat :: ? where
Zero :: Nat
Succ :: Nat → Nat

data Vec :: Nat → ?→ ? where
VN :: Vec Zero a
VC :: a→ Vec n a→ Vec (Succ n) a

Equipped with type-level natural numbers, we can encode type-level addition
(using the Peano axioms (Peano, 1889)) by means of a multi-parameter type
class and functional dependencies:

class Add (n :: Nat) (m :: Nat) (k :: Nat) | n m→ k
instance Add Zero m m
instance Add n m k ⇒ Add (Succ n) m (Succ k)

parameters n and m represent the operands, and parameter k represents the
result, which is uniquely determined by the choice of n and m. The two Peano
axioms for addition correspond to two instances for class Add, one for each
form n can take.

4Sulzmann et al. (2007b) interpret class instances bidirectionally, but the CHR-based
interpretation of type classes does not always align with the dictionary-passing elaboration
we are targeting here, as we discussed in Chapter 8.

5A similar example has been presented by Hallgren (2000), who implemented insertion
sort at the level of types using functional dependencies.

210 BIDIRECTIONAL INSTANCES

All the above can be combined to define function append, which concatenates
two length-indexed vectors:

append :: Add n m k ⇒ Vec n a→ Vec m a→ Vec k a
append VN ys = ys
append (VC x xs) ys = VC x (append xs ys)

The implementation of append is identical to the corresponding one for simple
lists but its signature is much richer: append takes two vectors of length n and
m, and computes a vector of length k, where n+m = k. Types like the above are
extremely useful for example in linear algebra libraries (see for example Hackage
package linear), to ensure that operations respect the expected dimensions.

Unfortunately, the above example fails to type-check, due to the lack of an
evidence-based translation of functional dependencies. Yet, even with the
development of functional dependencies we presented in Chapter 8 the above
program is ill-typed.

Once again, the key element missing is bidirectional instances. In the second
clause of append, the recursive invocation of append requires (Add n′ m k′),
while the signature provides (Add (Succ n′) m (Succ k′)).6 That is, we need
the following implication:

∀n′. ∀m. ∀k′. Add (Succ n′) m (Succ k′)⇒ Add n′ m k′

which can be obtained by interpreting the second Add instance bidirectionally.

As we argued in the previous chapter, associated type families (Chakravarty et al.,
2005a) share—for the most part—their semantics with functional dependencies.
Thus, the problem we are presenting here applies to associated type families as
well; shortcomings of type classes affect all their extensions.

In summary, the lack of bidirectionality of type class instances severely
reduces the expressive power of type class extensions, such as associated
types (Chakravarty et al., 2005b), associated type synonyms (Chakravarty
et al., 2005a), and functional dependencies (Jones, 2000).

Workaround One might argue that the problem can be avoided by using Open
Type Families (Schrijvers et al., 2007, 2008). Indeed, we can implement addition

6In fact, the signature provides (Add n m k), which we can refine using n ∼ Succ n′

(obtained by GADT pattern matching), and the type-level function introduced by the
functional dependency (see Chapter 8).

https://hackage.haskell.org/package/linear

MOTIVATION 211

by means of an open type family Add:

type family Add (n :: Nat) (m :: Nat) :: Nat
type instance Add Zero m = m
type instance Add (Succ n) m = Succ (Add n m)

and assign append the alternative signature:

append :: Vec n a→ Vec m a→ Vec (Add n m) a

Nevertheless, this workaround is not a panacea. First, it does not address the
original problem of type classes being insufficiently expressive. Second, as Morris
and Eisenberg (2017) have shown, open type families severely complicate the
meta-theory of the system, and should thus be avoided. One of the most
important problems with open type families is partiality, which requires infinite
unification, while Haskell does not accept infinite types. This issue constitutes
the main motivation for the development of the work of Morris and Eisenberg
(2017). We refer the reader to their work for more details on this debate.

9.1.3 Constrained Type Families

Morris and Eisenberg (2017) recently provided compelling arguments for the
replacement of open type families with what they call Constrained Type Families.
Constrained type families, similarly to associated type families, use the generic
notion of qualified types (Jones, 1992) to capture the domain of a type family
within a predicate.

Within this setting, the bidirectionality of the axioms is essential. Indeed,
Morris and Eisenberg use the append example above to motivate the extension
of System FC with the assume construct, which axiomatically provides the
bidirectionality needed for append to type check.

9.1.4 Summary

In summary, the lack of a bidirectional elaboration of class instances seriously
undermines the interaction between GADTs and type classes, as well as type
class extensions. In the remainder of this chapter we present a solution to this
problem, which shows how to elaborate class instances bidirectionally in System
FC, without additional extensions.

212 BIDIRECTIONAL INSTANCES

9.2 Technical Challenges

Though bidirectional instances are sorely needed for applications involving
GADTs, the problem is more general. For example, GHC currently rejects
programs where wanted constraint Eq a needs to be derived from given constraint
Eq [a]. This is the case for the following type-annotated function:

cmp :: Eq [a]⇒ a→ a→ Bool
cmp x y = x == y

Though contrived, function cmp is a minimal example that exhibits all problems
that arise in elaborating class instances bidirectionally in the well-established
dictionary-passing translation (Hall et al., 1996). Thus, we use it as our running
example throughout the remainder of this section to discuss all the technical
challenges of interpreting type class instances bidirectionally.

9.2.1 Key Idea

Why Are Instances Bidirectional The first question one might ask is why can
the instance axiom be inverted; why can type class instances be interpreted
bidirectionally.

Existing systems with type classes ensure coherence by disallowing instance
heads to overlap (Definition 3). If no instance heads overlap, then the entailment
of a class constraint can have at most one derivation tree if no local constraints
are present (if local constraints are available (e.g., from a type signature),
multiple derivation trees might exist but they all have the same computational
content; only class instances provide the computational content). Thus, the
evidence term (dictionary) for any constraint (TC τ) is uniquely determined by
the parameter τ . For example, given that instances are non-overlapping, the
only way one can derive Eq [Int] is by using the following two instances:

instance Eq Int
instance Eq a⇒ Eq [a]

One could also derive Eq [Int] from a given constraint Ord [Int], since Eq is
a superclass of Ord. Yet, computational content is only given by instance
declarations; the dictionary of type TEq [Int] stored within the dictionary of
type TOrd [Int] has to be computed using the above two instances.

That being said, the only way one can create a dictionary of type Eq [a], for
any type a, is by using the Eq instance for lists. Consequently, if a constraint
Eq [a] is given, one can safely assume that Eq a is also available: modus ponens
is invertible if there is no overlap in the implication heads.

TECHNICAL CHALLENGES 213

General Strategy Unfortunately, bidirectionality of class instances is a meta-
property of type classes: the system does not utilize it to become more powerful.
Additionally, it is a fragile property: if we allow instances to overlap, the property
no longer holds (if there are multiple ways to derive the same constraint, one
can no longer invert the instance axiom).

In order to integrate the property within the system, we need to show how to
derive the instance context from the instance head constructively. To achieve
this, our approach is simple: reuse the infrastructure of superclasses.

Superclass dictionaries are stored within subclass dictionaries. Hence, a
superclass constraint (e.g., Eq a) can always be derived from a subclass constraint
(e.g., Ord a), which is constructively reflected in a System F projection function.
Thus, our key idea is to store the instance context within the class dictionary
and retrieve it when necessary using System F projection functions.

This technique poses several technical challenges, which we elaborate on in the
remainder of this section.

9.2.2 Challenge 1: Lack of Parametricity

Possibly the biggest challenge in interpreting class instances bidirectionally lies
in the non-parametric dictionary representation. Let us consider the standard
equality class Eq, along with 3 instances:

class Eq a where { (==) :: a→ a→ Bool }

instance Eq Int where { (==) = . . . } (I1)
instance Eq b ⇒ Eq [b] where { (==) = . . . } (I2)
instance (Eq c,Eq d) ⇒ Eq (c, d) where { (==) = . . . } (I3)

The instance context for each instance varies, depending on the instance
parameter a: instance (I1) has an empty context, instance (I2) has context
Eq a, and instance (I3) has context (Eq a,Eq b). In the well-established
dictionary-passing elaboration approach (Wadler and Blott, 1989; Hall et al.,
1996), these contexts correspond to the following System F types:

(I1) : () , where a ∼ Int
(I2) : TEq b , where a ∼ [b]
(I3) : (TEq c,TEq d) , where a ∼ (c, d)

where TEq is the System F type constructor for the class dictionary. Depending
on how we refine the class parameter a, the representation of the instance
context in System F can be different.

214 BIDIRECTIONAL INSTANCES

9.2.3 Challenge 2: Termination of Type Inference

Typing Specification Though elaboration exhibits a non-parametric behavior,
in terms of logic (and typing) bidirectional instances can be expressed via
universal quantification alone. For example, the above three instances can be
interpreted as the following formulas:7

Eq Int ↔ True
∀a. Eq [a] ↔ Eq a
∀b. ∀c. Eq (b, c) ↔ (Eq b ∧ Eq c)

Of course, the one direction of the implication is already derived by the
specification of the basic system; for extending the system with bidirectional
instances one would simply have to add implications for the other direction.

Type Inference and Termination The specification of typing is not affected
much by bidirectional instances but this is not the case for type inference.
Consider for example the inversion of the Eq [a] instance:

∀a. Eq [a]→ Eq a

If such axioms are not used with care, the termination of the type inference
algorithm is threatened. The standard backwards-chaining entailment (see
Section 6.3) cannot use such axioms to simplify goals and terminate. For
example, we can “simplify” Eq τ to Eq [τ] using the above axiom. The size of
the “simpler” constraint Eq [τ] is bigger than the one we started with. What
is more, the axiom can be applied infinitely many times (to capture that all
nested list types are instances of Eq): the resolution tree now contains infinite
paths. Thus, even the backtracking approach we showed in Chapter 7 cannot
handle bidirectional instances in an obvious way: bidirectional axioms need to
be used selectively to ensure the termination of type inference.

9.2.4 Challenge 3: Principality of Types

Finally, the introduction of bidirectional instances threatens the principality
of types. In the absence of bidirectional instances, function cmp would have a
single most general type:

cmp :: Eq a⇒ a→ a→ Bool

Constraint Eq a can entail constraint Eq [a] but not the other way around. In
a system equipped with bidirectional instances, cmp can have multiple most

7An empty set of constraints can be logically interpreted as the constant True.

TECHNICAL CHALLENGES 215

general types where none is more general than the other. All the following types
are equally general:

cmp :: Eq a⇒ a→ a→ Bool
cmp :: Eq [[a]]⇒ a→ a→ Bool
cmp :: Eq [Maybe [a]]⇒ a→ a→ Bool

In fact, cmp has infinitely many principal types. This is not new. The Hindley-
Damas-Milner system (Section 5.3.2) suffers from the same problem, as well as
its extension with qualified types (Chapter 6).

For HM, principality of types is refined to take into account the possibilities for
positioning universal quantifiers. For example, function f can have either of
the following types

f :: ∀a. ∀b. a→ b→ a (signature 1)
f :: ∀b. ∀a. a→ b→ a (signature 2)
f = λx. λy. x

yet none is more general than the other.8 Nevertheless, from one signature we
can derive the other via substitution [a/b, b/a].

Similarly, the basic system exhibits the same problem in terms of the order of
constraints, as well as by means of simplification ((Eq a,Ord a) is isomorphic
to Ord a).

In summary, in the presence of bidirectional instances a function can have
infinitely many (isomorphic to each other) principal types. This is not necessarily
a problem but in order to ensure well-defined semantics for our calculus,
it is imperative that we refine the notion of type subsumption (see relation
Γ |= σ1 � σ2 in Section 5.3.3), as well as the definition of the principal type
property (see Theorem 8).

9.2.5 Our Approach

In the remainder of this chapter we present the development of bidirectional
instances and illustrate how we address the aforementioned challenges.

The key idea of our technique is to capture the parameter-dependent instance
context in an open type-level function and store it within class dictionaries. To
that end, our target language is not plain System F, but System FC, which
allows for the definition of open type functions. We elaborate on our approach
in the next section.

8Notice though that the type-directed elaboration to System F we presented in Section 5.3.2
would elaborate f differently, depending on its type.

216 BIDIRECTIONAL INSTANCES

9.3 Bidirectional Instances

In this section we present the formalization of type classes with bidirectional
instances. Since the system is a conservative extension of the basic system
(Chapter 6), we only present the differences.

9.3.1 Syntax Extensions

Instead of directly introducing a logical biconditional connective into our
calculus, we take a simpler approach: a class instance gives rise to both
implications (left-to-right and right-to-left) separately. This allows us to reuse
existing infrastructure and the well-established dictionary-passing elaboration
method (Hall et al., 1996). For example, the equality instance for tuples

instance (Eq c,Eq d)⇒ Eq (c, d) where { (==) = . . . }

is interpreted as the following three axioms:9

∀c. ∀d. (Eq c,Eq d)⇒ Eq (c, d) (IA)

∀c. ∀d. Eq (c, d)⇒ Eq c (BA1)
∀c. ∀d. Eq (c, d)⇒ Eq d (BA2)

The first we call the instance axiom, and the other two the inverted instance
axioms. In order to use the inverted axioms selectively and avoid the termination
issues we mentioned earlier, we extend the syntax of program theory P with an
additional component, the inverted instance axioms AB (where B stands for
“bidirectional”):

P ::= 〈 AB ,AS ,AI , CL〉 program theory

As we illustrate below, similarly to superclass axioms AS , inverted instance
axioms AB are used only during type checking but not during type inference.
The rest of the syntax is identical to the syntax of the basic system we presented
in Figure 6.1.

9Instead of introducing a conjunction symbol into the logic, we generate two separate
axioms using the distributivity of implication over conjunction:

(φ1 → φ2 ∧ φ3)↔ ((φ1 → φ2) ∧ (φ1 → φ3))

BIDIRECTIONAL INSTANCES 217

9.3.2 Specification Extensions

Similarly, the specification of typing and elaboration is for the most part identical
to that of the basic system (Section 6.3). Since System F is a strict subset of
System FC, all relations presented in Section 6.3 remain unaltered.

The changes bidirectional instances introduce are concentrated in class and
instance declaration typing, which we now discuss.

Class Declarations The specification of class typing with elaboration is given
by judgment Γ C̀LS cls : P; Γ′ decl, as is for the basic system (Figure 6.2).
Since for the most part the rule is identical to the basic system, we only highlight
the differences. For a class declaration of the form

class ∀a. (Q1, . . . ,Qn)⇒ TC a where { f :: σ }

we have the following:

1. Firstly, in addition to the superclass and method projections, the class
declaration gives rise to a System FC type family declaration:

type FTC a

Function FTC a captures the functional dependency between the instance
context and the class parameter. Hence, function FTC is populated by
clauses whenever a TC instance is encountered.

2. Secondly, we extend the dictionary declaration, so that it can store the
instance context of type FTC a:

data TTC a = KTC (FTC a) υn υ

where υn are the dictionary types corresponding to the superclass
constraints (Q1, . . . ,Qn) and υ is the elaboration of method type σ.

3. Finally, since the data constructor KTC now stores an additional field, we
“shift” the superclass and method projections accordingly:

let di : ∀a. TTC a→ υi = Λa. λ(d : TTC a). proji+1
TC (d) i ∈ [1 . . . n]

let f : ∀a. TTC a→ υ = Λa. λ(d : TTC a). projn+2
TC (d)]

Instance Declarations Typing for instance declarations also preserves the
signature we gave in Figure 6.2. For a class instance of the form

instance ∀b. (Q1, . . . ,Qm)⇒ TC τ where { f = e }

bidirectional instances introduce the following extensions:

218 BIDIRECTIONAL INSTANCES

1. Firstly, an additional clause is generated for function FTC, capturing
the dependency between the instance parameter τ and instance context
(Q1, . . . ,Qm):

axiom gTC
τ b : FTC υ ∼ (υ1, . . . , υm)

where υi is the dictionary type representation of the i-th constraint in the
instance context and υ is the elaboration of the type parameter τ .

2. Secondly, the program theory extension introduced by the instance now
includes the inverted instance axioms, which take the form:

Si = ∀b. TC τ ⇒ Qi i ∈ [1 . . .m]

Of course, such implications need to be reflected in term-level functions
in the generated System FC code.

3. For every implication Si, we generate a projection function di, given by
the following definition:

let di : ∀b. TTC υ → υi = Λb. λ(d : TTC υ). ctxProjiTC(d) i ∈ [1 . . .m]

where function ctxProjiTC(d) is defined as follows:

ctxProjiTC(d) ≡ case d of
KTC ctx d

n
x→ case ctx . (gTC

τ b) of
(d1, . . . , dm)→ di

The outer pattern matching exposes the instance context ctx , of type FTC υ,
which we explicitly cast to a tuple of all instance context dictionaries:
(d1, . . . , dm). Then, the inner pattern matching extracts and returns the
corresponding instance context dictionary di.

4. Finally, the implementation of the instance dictionary (transformer) needs
to store the instance context dictionaries within the dictionary for TC τ .
Thus, the instance dictionary (transformer) now takes the form:

let d : ∀b. υmi → TTC υ = Λb. λ(d : υm). KTC υ ((d1, . . . , dm) . γ) tn t]

where γ = sym (gTC
τ b). For the constructed dictionary to be well-typed,

the tuple (d1, . . . , dm) containing all instance context dictionaries needs
to be explicitly cast to have type FTC υ, as the type of KTC requires. This
is exactly what coercion γ proves:

γ : (υ1, . . . , υm) ∼ FTC υ

BIDIRECTIONAL INSTANCES 219

9.3.3 Algorithm Extensions

Type inference is again for the most part identical to that of the basic
system (Section 6.4). The changes that bidirectional instances introduce are
concentrated in declarations. Type inference for class declarations is identical
to its specification so we only discuss the differences in class instances and value
bindings.

Instance Declarations Type inference for instance declarations behaves
similarly to its specification: steps 1–3 above remain identical. The main
difference lies in the type inference and subsumption checking for the method
implementation.

In addition to the superclass closure (ScClosure(a,P) = (A,E)), we also
compute the transitive closure of the inverted axioms. Thus, we replace function
ScClosure of Section 6.4 with function InvScClosure:

InvScClosure(a, 〈AB ,AS ,AI , CL〉) = ((C′L,AI , CL),E)
where (C′L,E) = mponens∗(a, (AB ,AS), CL)

Value Bindings Type inference for value bindings is also mildly affected by
bidirectional instances. Top-level bindings without a type annotation simply
ignore the inverted axioms, alongside the superclass axioms. That is, users that
enable bidirectional instances can expect type inference to behave just as it did
without them.

A top-level value binding with an explicit type annotation behaves differently,
just as method typing does. Just as we do with superclass constraints, we also
compute the transitive closure of the inverted axioms, making more derivations
possible. For example, function cmp we presented earlier

cmp :: Eq [a]⇒ a→ a→ Bool
cmp x y = x == y

is now well-typed and is elaborated as follows:

cmp : ∀a. TEq [a]→ a→ a→ Bool
cmp = Λa. λ(dla : TEq [a]). λ(x : a). λ(y : a).

let da : TEq a = dinv a d in (==) a da x y

where dinv is the inverted axiom of the Eq instance for lists:

dinv : ∀a. TEq [a]→ TEq a
dinv = Λa. λ(d : TEq [a]).

case d of { KEq ctx d x→ case ctx . (gEq
[a] a) of { d′ → d′ } }

220 BIDIRECTIONAL INSTANCES

and gEq
[a] a : FEq [a] ∼ TEq a.

Notice that in this case, the inner pattern match does not contribute anything,
since the instance context contains a single constraint. In the general case
though, the additional pattern matching is essential for separating the instance
constraints. For example, for the Eq instance for tuples

instance (Eq c,Eq d)⇒ Eq (c, d) where { (==) = . . . }

the inverted instance axioms are elaborated into the following two functions
d1 : ∀b. ∀c. TEq (b, c)→ TEq b
d1 = Λb. Λc. λ(d : TEq (b, c)).

case d of { KEq ctx x→ case (ctx . g3 b c) of { (d′1, d′2)→ d′1 } }

d2 : ∀b. ∀c. TEq (b, c)→ TEq c
d2 = Λb. Λc. λ(d : TEq (b, c)).

case d of { KEq ctx x→ case (ctx . g3 b c) of { (d′1, d′2)→ d′2 } }

where the inner pattern match is essential for separating the instance context
dictionaries d′1 and d′2.

9.4 Meta-theory

Finally, we now turn to the meta-theoretical properties of type classes
with bidirectional instances. Since all judgments preserve the shape of the
corresponding basic system judgments, the corresponding top-level theorem
statements remain identical too.

Hence, we discuss below the two most interesting properties of the system:
termination of type inference and the principal type property.

Termination To illustrate why type inference in the presence of bidirectional
instances terminates, we first distinguish between type inference and type
checking.

In cases where a type is inferred, the algorithm is identical to that of the
basic system; the feature manifests itself when there are (implicit or explicit)
type signatures. Hence, decreasing instance contexts are sufficient to ensure
termination for cases where we only infer a type for an expression.

In cases where we need to check an expression against a type (e.g., in explicitly
type-annotated terms or method implementations), the inverted axioms also
come into play, as well as the superclass axioms.

META-THEORY 221

Since we compute the closure of the superclass relation and the inverted axioms
(by means of function InvScClosure), we need to ensure that both superclass
and inverted axioms cannot be applied indefinitely.

For the former, the DAG restriction (from the termination conditions we
presented in Section 6.5) is sufficient. For the latter, the decreasing contexts
are also sufficient. To illustrate why, consider the following inverted axiom:

∀a. ∀b. Eq (a, b)⇒ Eq a

If we used the above axiom backwards (like simplification does), then the size
of the type parameter would increase. Instead, during completion, we apply the
axiom to constraints of the form Eq (τ1, τ2), ending up with an additional axiom
of a smaller size: Eq τ1. In short, usage of both the superclass and inverted
axioms is bounded: the number of superclass axioms used is bounded by the
height of the superclass DAG, and the number of inverted axioms by the size of
the types in instance heads.

In fact, once the wanted constraints are fully simplified and the closure of the
given constraints is computed, entailment can be simply implemented as set
inclusion: all wanted constraints should be present in the set of givens.

To summarize, we are confident that type inference is terminating in the presence
of bidirectional instances:

Conjecture 8 (Termination). If the source program satisfies the termination
conditions of Section 6.5, then type inference for type classes with bidirectional
instances terminates.

Principality of Types As we discussed in Section 9.2.4, bidirectional instances
require us to revisit the notion of principal types.

First, the specification of the principal type can remain identical to the
corresponding for the basic system (see Section 6.4): the definition of a principal
type does not specify one type, but rather the properties of it.

Second, type inference infers one principal type. Since plain type inference does
not exploit the inverted axioms, the algorithm infers backwards-compatible
principal types. Backwards-chaining simplifies constraints such as Eq [a] to
Eq a but not the other way around. Thus, the algorithm would never infer a
type of the form

∀a. ∀b. Eq (a, b)⇒ . . .

but would infer the isomorphic (and also principal) type

∀a. ∀b. (Eq a,Eq b)⇒ . . .

222 BIDIRECTIONAL INSTANCES

Expressions with explicit type annotations have only one principal type (the one
specified by the signature). In these cases, the algorithm will use the inverted
axioms to entail the wanted constraints (Eq a,Eq b) using the given Eq (a, b),
thus constructing again the principal type.

A Note on Soundness An aspect of bidirectionality we have not discussed is its
meta-theoretical properties in the presence of overlapping instances. It is known
that overlapping instances make the semantics of type classes incoherent but
they do not introduce unsoundness. In the presence of bidirectional instances,
this is no longer true.

Take for instance the following overlapping instances:

instance Eq a⇒ Eq [a] (1)
instance Eq [a] (2)

Each instance gives rise to a type-equality axiom:

axiom g1 a : FEq [a] ∼ TEq a
axiom g2 a : FEq [a] ∼ ()

Axioms g1 and g2 violate the compatibility condition (Definition 8), which in
turn means that our elaboration would give rise to unsound System FC code.
Indeed, coercion (sym (g1 Int)) o

9 (g2 Int) is a proof of TEq Int ∼ ().

Of course, instances that we do not elaborate bidirectionally can overlap freely
(resulting in sound, yet incoherent semantics). One could consider explicitly
marking classes whose instances are to be interpreted bidirectionally and require
only these to not overlap; we leave such design choices to compiler developers
that consider implementing our feature.

9.5 Scientific Output

In this chapter we have presented a conservative extension of type classes,
which allows for type classes to be interpreted bidirectionally. This extension
significantly improves the interaction of GADTs with type classes, by allowing
proper structural induction GADTs, even in the presence of qualified types.

The type inference and elaboration algorithm we presented in this chapter is
also implemented in a prototype compiler, available at

https://github.com/gkaracha/bidirectional-impl

https://github.com/gkaracha/bidirectional-impl

SCIENTIFIC OUTPUT 223

The prototype incorporates higher-kinded datatypes and performs type inference,
elaboration into System FC, and type checking of the generated code.

The contents of this chapter constitute part of ongoing work, which has been
performed by the author of this work, in collaboration with Koen Pauwels,
Michiel Derhaeg, and Tom Schrijvers. The prototype is based on the initial
implementation of quantified class constraints (by the author of this thesis and
Gert-Jan Bottu). The simplification of the prototype (to plain type classes
without quantified class constraints), the extension of the target language to
System FC, and the extension with bidirectional instances has been implemented
by Michiel Derhaeg, under the supervision of the author of this thesis.

Chapter 10

Conclusion

“So long, and thanks for all the fish.”

—Douglas Adams, The Hitchhiker’s Guide to the Galaxy, Vol. I

In this chapter, we briefly revisit the goals of this thesis and summarize the
results we presented in each chapter. Additionally, we discuss ongoing work
as well as possible ideas for future work based on the findings we presented.
Since Parts I and II are fairly independent, we discuss all the above for each
part separately.

10.1 Aim of the Thesis

The aim of this thesis is to improve upon existing and develop new means
for type-level computation and reasoning. More specifically, we focus on two
existing features: pattern matching (Part I) and type classes (Part II).

The goal of Part I is to improve upon existing mechanisms for reasoning about
pattern matching. Pattern matching has been extended with a multitude of
features throughout the years, yet we know of no algorithm that can reason
about pattern matching properties in the presence of such features. Thus, the
goal of Part I is the development of a pattern match checking algorithm that
takes into account GADTs, guards, and laziness.

Part II focuses on the development of (mostly) new features that allow for more
expressive type-level computation. More specifically, the overall goal of Part II

225

226 CONCLUSION

is to lift the expressive power of type classes from Horn clauses to a significant
fragment of first-order logic.

10.2 Summary

In this section we give an overview of the most significant results presented
in this thesis. The results of Part I and Part II are presented Sections 10.2.1
and 10.2.2, respectively.

10.2.1 Pattern Matching

Part I focuses on the semantics of pattern matching and its meta-theoretical
properties. More specifically, it addresses an old problem in a new setting:
detection of missing and redundant clauses in the context of lazy pattern
matching, extended with guards and GADTs.

Chapter 2: Research Question

“In mathematics the art of proposing a question must be held of
higher value than solving it.”

—Georg Cantor

First, Chapter 2 consists mostly on basic background information related to
pattern matching and the extensions it has seen in the last years. Though most
of the material in Chapter 2 is either folklore or part of published work, the
main contribution of the chapter is the identification of the challenges one needs
to address in order to reason about modern pattern matching in a lazy context.

Chapter 3: Pattern Match Checking Algorithm

Second, Chapter 3 addresses the problem outlined in Chapter 2 by developing
a pattern match checking algorithm.

At the core of the algorithm lies a simple yet powerful pattern language, in
which we can encode existing pattern matching extensions supported by GHC.
The pattern language is an interesting research result on its own, and—as
we discuss in more detail below—provides interesting opportunities for more
extensions, such as non-linear patterns and or-patterns.

SUMMARY 227

Next, Chapter 3 provides an algorithm that provides warnings for functions
with redundant or missing patterns. These warnings are accurate, even in the
presence of GADTs, guards, and laziness. The algorithm is concise, easy to
understand, and—most importantly—modular. More specifically, the algorithm
handles the structural aspects of pattern matching generically and relies on
external satisfiability oracles for the non-structural aspects.

This separation of concerns is extremely helpful: one can adjust the
expressivity/performance ratio of the algorithm simply by using different
external oracles, without affecting the main implementation of the algorithm.
Indeed, as we illustrate in Section 3.4, we can state the correctness of the
algorithm by treating the oracles as a black box; as long as they are conservative,1
the algorithm is sound with respect to Haskell’s semantics.

Chapter 4: GHC Implementation

“There’s a difference between knowing the path and walking the
path.”

—Morpheus, The Matrix

Finally, Chapter 4 shows how to take the algorithm of Chapter 3 from a
theoretical model to an actual implementation in an industrial-strength compiler
as GHC.

Many theoretical developments in the literature sustain heavy adaptations in
order to be implemented in projects of this scale. The goal of Chapter 4 is to
illustrate how the algorithm of Chapter 3 needs only minimal changes to be
adopted by a general-purpose functional language compiler.

Additionally, Chapter 4 provides qualitative and quantitative performance
results and insights we have obtained throughout the development of the
algorithm in GHC. These results are of importance for the academic community
at large: they motivate the design choices we made in the development of the
algorithm and provide insight into performance-related aspects of pattern match
checking in general.

Lastly, this artefact is available to all Haskell users; the implementation of our
algorithm is part of the GHC distribution.

1By conservative we mean that they do not give false negative errors: if the oracle marks
a set of constraints as unsatisfiable, then it should be indeed unsatisfiable.

228 CONCLUSION

10.2.2 Type Classes

Part II focuses on the semantics of type classes and develops three type class
extensions, with an aim to (a) lift the expressive power of type classes to a
significant fragment of first-order logic, and (b) offer new means for type-level
computation to Haskell users.

Chapter 5: Background

Chapter 5 consists on background information related to the notions of type
inference and qualified types, in the context of type classes. The material
presented in Chapter 5 consists entirely of folklore and published work and
summarizes the expected semantics of type classes as well as relevant notions.

Chapter 6: The Basic System

Chapter 6 presents a technical (yet easy-to-understand) formalization of type
classes which we use to develop our extensions on in the subsequent chapters.
The main contribution of this chapter lies in the handling of superclasses, an
important aspect of type classes that is often omitted; to our knowledge, we
are the first to formalize type inference and elaboration of type classes in the
presence of superclass constraints.

Moreover, prior work on type classes makes simplifications for the sake of brevity
and readability; the system we present in Chapter 6 takes no such shortcuts.
We believe that this system is a great candidate for proving meta-theoretical
properties of type classes, in a way that also reflects their implementations.
This constitutes part of our future work, as we discuss below.

Chapter 7: Quantified Class Constraints

The first extension of type classes (Quantified Class Constraints) is given in
Chapter 7. This extension allows universal quantification and logical implications
to appear in arbitrarily nested positions within formulas, thus lifting the
expressing power of type classes from simple Horn clauses to the universal
fragment of Hereditary Harrop logic.

The main contribution of this chapter lies in the typing specification of the
feature, which utilizes a technique known as “focusing”, to provide a simple and
expressive semantics. Next, we provide a sound and complete algorithm, which

SUMMARY 229

also elaborates source programs in a language akin to System F. Last, we give a
detailed account of how to ensure termination of type inference in the presence
of quantified class constraints and provide a prototype implementation of the
type inference algorithm.

Due to the popularity of and the numerous requests for the development of
this feature, we expect an implementation of this feature in GHC to have a big
impact on Haskell users. Hence, such an implementation constitutes part of our
future work.

Chapter 8: Functional Dependencies

The second extension of type classes (Functional Dependencies) is given in
Chapter 8. This extension allows the decoration of multi-parameter type classes
with explicit annotations of parameters uniquely determining other parameters.

This feature can be used to resolve ambiguities in type inference and as a means
of type-level computation (a functional dependency can be interpreted as an
open type-level function).

Functional dependencies have been introduced in Haskell in the early 2000s, yet
several aspects of their semantics have been unspecified. The main novelty of
our work lies in the interpretation of functional dependencies as explicitly-named
type-level functions. This allows us to give the first algorithm for elaborating
functional dependencies into a statically-typed language akin to System F
(System FC). Furthermore, our type inference and elaboration algorithm uses
the same building blocks as the one for type families, thus making possible the
coexistence of (and interaction between) both features within the same system.

Chapter 9: Bidirectional Instances

The third and last extension of type classes (Bidirectional Instances) is given
in Chapter 9. This extension allows class instances to be interpreted and
elaborated bidirectionally, effectively extending the logical interpretation of type
classes with the biconditional connective.

The main novelties of this work are (a) the encapsulation of the functional
dependency between the instance parameters and the instance context within
an open type-level function, and (b) the extension of the traditional dictionary-
passing translation of type classes with an additional field, which captures the
parameter-dependent set of instance context dictionaries.

230 CONCLUSION

This extension significantly raises the expressive power of type classes,
particularly from the programmer’s-eye view. More specifically, the bidirectional
interpretation of type class instances allows functions with qualified types to
perform structural induction over GADTs. Additionally, addressing this infelicity
raises the expressive power of all type-class-based features, such as functional
dependencies and associated type synonyms.

10.3 Ongoing and Future Work

“One never notices what has been done; one can only see what
remains to be done.”

—Marie Curie

We see a lot of potential for further development of both parts of this thesis.
Indeed, several of the ideas we present in this section are already under active
development.

10.3.1 Pattern Matching

Pattern Match Compilation and Optimizations

We would like to work mainly on two approaches to efficient pattern match
compilation.

First, we would like to integrate pattern match checking and compilation so that
multiple traversals can be avoided. Currently, they are performed separately
(see Chapter 4), which (a) requires two traversals, and (b) makes it difficult to
transfer exhaustiveness and redundancy information obtained by the checker to
the pattern match compiler.

Unfortunately, the algorithm of Chapter 3 traverses the pattern matrix in a
row-by-row fashion (according to the semantics of pattern matching), while
existing algorithms for efficient pattern match compilation (see for example the
work of Maranget and Para (1994), and Wadler (1987a)) perform more of a
column-based traversal. This makes the integration of the two within the same
algorithm a challenging task.

Alternatively, we would like to investigate ways of exploiting the analysis results
from pattern match checking for optimized compilation, without combining
the two algorithms. Currently, the two are entirely disconnected but it is

ONGOING AND FUTURE WORK 231

well-established that compilation can significantly benefit from pattern match
checking (see for example the work of Le Fessant and Maranget (2001), which
is actively used by the OCaml compiler).

Source Language Extensions

As illustrated throughout the thesis, our core pattern language is concise and
expressive enough to encode a multitude of pattern matching features. More
specifically, the ability of the pattern language to encode view patterns and the
algorithm to reason about them hint at possible source-level pattern matching
extensions (based on view patterns) we could implement.

Several encodings of extensions using view patterns are already known within
the GHC community2. Their encoding using view patterns points at ways to
compile them into primitive pattern matching, as well as how to translate them
into our pattern language.

For example, we can translate “and-patterns” of the form (P1 & P2) (also known
as both-patterns) straightforwardly, by adding the following clause to function
translatep(·) of Section 3.2.2:

translatep(P1 & P2) = x (translatep(P1)← x) (translatep(P2)← x)

(an expression matches a pattern of the form (P1 & P2) if it matches both P1
and P2).

Furthermore, we could also consider the extension of Haskell with non-linear
patterns (the semantics being that the first appearance of a variable binds and
the subsequent ones check). For example, function f

f x x = True
f y z = False

would be assigned the type

f :: Eq a⇒ a→ a→ Bool

and the clauses would be translated into

x x′ (True ← x == x′) → True
y z → False

This semantics is just one of many possible ones; the key idea here is the
numerous possibilities that our pattern language and checking algorithm provide.

2See for example https://ghc.haskell.org/trac/ghc/wiki/ViewPatterns#Examples.

https://ghc.haskell.org/trac/ghc/wiki/ViewPatterns#Examples

232 CONCLUSION

Pattern Trees and Or-patterns

As we illustrated in Section 4.1.2, our implementation in GHC generalizes
pattern vectors to a tree-like structure, to account for multiple guard-vectors
associated with the same pattern vector. This generalization provides interesting
opportunities for follow-on work, such as a full-blown generalization of pattern
matrices to pattern trees.

This natural generalization allows the encoding of and reasoning about or-
patterns, a feature already present in several functional languages (e.g.,
OCaml (Maranget, 2007) and Coq (The Coq development team, 2004)), but
not Haskell.

Indeed, we have already extended the pattern language of Section 3.2 and
the checker of Section 3.3 to accommodate pattern trees and are planning on
publishing our results in the near future.

Bug Fixes

Though we have successfully integrated our implementation of the pattern
match checking algorithm in GHC, there are still a couple of infelicities that
would like to address in the future. More specifically, we would like to address
the following GHC ticket (bug report):

Ticket #12949 Both the pattern translation and the algorithm of Chapter 3
assume that the algorithm runs after type classes are translated into their
dictionary counterparts.

Though this is indeed the case (the algorithm is deployed post-type-inference),
the algorithm currently does not tap into this information: two calls of an
overloaded function with different type instantiations represent different terms
and the term oracle needs to treat them as such. This is an implementation
bug we would like to address in the near future.

Performance Improvements

Another line of work we would like to pursue in the future is concerned with
improving the performance and space consumption of our implementation.

Firstly, we would like to investigate the benefits of solving type-level constraints
incrementally, just as we do with term-level constraints. Incremental solving for

https://ghc.haskell.org/trac/ghc/ticket/12949

ONGOING AND FUTURE WORK 233

term constraints has shown a significant performance improvement—especially
in the presence of literals and pattern guards (Section 4.3)—so we expect to
get similar improvements with incremental solving of type constraints.

Secondly, we would like to improve the expressiveness of the term-oracle. As
we have learned through the bug reports we discussed in Section 4.3, the
performance of the oracles is critical for the overall performance of the algorithm.
Thus, we would like to investigate ways for our term oracle to efficiently deal
with constraints derived from view patterns.

Thirdly, we would like to investigate a different representation of value set
abstractions, as prefix trees. Indeed, the traversal pattern of the algorithm
naturally gives rise to value set abstractions with shared prefixes so we expect
this representation to be more space-efficient. Though our initial implementation
shared common prefixes using this alternative representation, the performance
cost was severe, which led us to the less sophisticated representation of value
set abstractions as lists of value vector abstractions. Our aspiration to return
to this more elegant representation is captured in bug report #11528.

Pattern Synonyms

Recent work by Pickering et al. (2016) formalized the semantics of pattern
synonyms, which differs from simple macro expansion. Given a pattern synonym
declaration of the form

pattern P x1 . . . xn = P

an expression matched against pattern (P P1 . . .Pn) first matches against
pattern P, and if successful, it proceeds with matching the sub-terms against
sub-patterns P1 . . .Pn. Using this semantics, we can easily extend our desugaring
algorithm of Figure 3.3 to handle pattern synonyms too:

translatep(P P1 . . .Pn) = z ~p0 ~p1 . . . ~pn

where pattern P x1 . . . xn = P
~p0 = translateg([y/x]P← z)
~pi = translateg(Pi ← yi) (i ∈ [1 . . . n])

Nevertheless, reasoning about pattern synonyms by exposing their definition
defeats the main purpose of their design: abstraction and modularity.

One recent attempt to tackle coverage checking in the presence of pattern
synonyms using user-specified pragma COMPLETE3 is still under-specified and

3A COMPLETE pragma definition axiomatically declares a collection of data constructors
and/or pattern synonyms to constitute a signature of a type constructor.

https://ghc.haskell.org/trac/ghc/ticket/11528

234 CONCLUSION

its implementation suffers from several problems due to the lack of a proper
specification.4

Thus, in the near future we would like to formally specify how our coverage
checking algorithm can deal with pattern synonyms in a principled way, without
exposing their underlying definition.

10.3.2 Type Classes

Implementation of Functional Dependencies in GHC

“Walking on water and developing software from a specification are
easy if both are frozen.”

—Edward V. Berard

The results we presented in Chapter 8 enable the proper integration of functional
dependencies in Haskell’s eco-system of advanced type-level features. We would
like to pursue this line of work in the near future and even address feature
request #11534, where the reconstructed functional dependency witness is
exposed to the user for explicit use.

To this end, we are already developing a standalone compiler prototype with
functional dependencies (the main developer of this work is Michiel Derhaeg,
under the author’s supervision). In future work we plan on extending the
prototype with type families and GADTs, in order to study their interaction at
length and possibly revise the formalization of Chapter 8.

Once the development of the prototype comes to an end, we expect to have
(a) qualitative and quantitative results on the interaction of the aforementioned
features, and (b) a stable technical specification of the algorithm, which we can
use to guide an implementation in GHC.

Bidirectional Instances

Currently we are also implementing bidirectional instances in our prototype
compiler with functional dependencies. Since the extension is rather small but
quite impactful, we expect to have a complete implementation of bidirectional
instances and functional dependencies soon, which will allow us to study the

4See for example the open tickets in the pattern match checking-related webpage:
https://ghc.haskell.org/trac/ghc/wiki/PatternMatchCheck.

https://ghc.haskell.org/trac/ghc/ticket/11534
https://ghc.haskell.org/trac/ghc/wiki/PatternMatchCheck

ONGOING AND FUTURE WORK 235

interaction of the two features and identify more benefits of interpreting instances
bidirectionally.

From Type Classes to First-order Logic

If one considers the syntax of first-order logic we presented in Section 5.4.2,
the extensions of Chapters 7, 8, and 9 already take a significant step towards
bridging the gap between type classes and first-order logic:

Chapter 7 significantly generalizes the positions in which universal quantification
and implication can appear in a formula. Chapter 8 extends the type language
with function symbols, as well as the language of formulas with type equalities
and existential quantification. Finally, Chapter 9 introduces bidirectionality,
effectively adding the biconditional symbol to the language of formulas.

Nevertheless, each feature has been developed in isolation. This allows us to
study the delicacies of each feature but does not give us any indication of
whether the cohabitation of all features in the same system would be possible.

We can already pinpoint the main challenge in this quest: how to entail equality
constraints in the presence of backtracking. To our knowledge, no existing
constraint solver can deal with both, and OutsideIn(X) (Vytiniotis et al.,
2011), the solver we instantiate the entailment specification of Sections 8.5.4
and 8.5.5 with, certainly does not. Integration of bidirectional instances with
functional dependencies seems straightforward: inverted axioms derived from
bidirectionality can be exploited first (as happens with superclass constraints),
and OutsideIn(X) can be utilized later to resolve wanted constraints. The
source of the problem lies in the integration of quantified constraints: the
completeness of the entailment algorithm for quantified constraints (Figure 7.5)
relies on backtracking. What’s more, as we discussed in Section 9.2.3, treating
inverted axioms like other axioms makes constraint solving non-terminating.
Thus, a backtracking-based approach cannot work in the presence of bidirectional
instances.

In summary, the research question we need to address is the following: is there
a way to entail class and equality constraints in the presence of backtracking?
We would like to answer this research question in the near future.

Constraint Disjunction

Another line of work we plan for the future is the development and integration
of another feature with those we have presented in this thesis (quantified

236 CONCLUSION

constraints, functional dependencies, and bidirectional instances): Constraint
Disjunction.

In short, the only5 connective of first-order logic that is not supported by our
extensions is logical disjunction. Indirectly, overlapping instances can introduce
constraint disjunction (since there can be multiple ways to satisfy the same
constraint, but in an incoherent way (see Section 6.5)).

In contrast to overlapping instances, by constraint disjunction we refer to the
introduction of a biased constraint operator ~∨ with a coherent semantics. As an
example, consider the following function which specializes its implementation
based on the available constraints:

nub :: (Ord a ~∨ Eq a)⇒ [a]→ [a]
nub = map head . group . sort

~∨ Data.List.nub

The type-level operator ~∨ reflects the two implementations given for num, which
are separated by a term-level operator ~∨.6 The intended semantics for nub is
that the first implementation is preferred if Ord a can be established. If only
the weaker constraint Eq a is satisfiable, the compiler specializes a call to nub to
the second implementation. Notice that the first implementation has a run-time
complexity of O(nlogn), while the second runs in O(n2).

The two most notable benefits of this approach are the following:

Overloading As is already achieved with type classes, constraint disjunction
promotes function overloading, yet in a slightly different fashion: one
can now use a single name for multiple implementations, even for the
same type (modulo the qualification). For example, this would obviate
the need for both functions nub (from package Data.List) and nubOrd
(from package Data.List.Extra).

Separation of Concerns Using constraint disjunction, the choice of the
appropriate implementation becomes a concern of the call-site, and not the
definition. This allows the separate development of libraries, independently
of their use: the compiler can choose the most performant implementation
automatically, at call-sites.

5If one were to ignore negation (¬).
6The use of the same symbol at the level of types and terms is incidental.

ONGOING AND FUTURE WORK 237

Meta-theory

Furthermore, for each of the features we introduced we have only partially
proven their meta-theoretical properties. In the near future, we would like
to formally prove (and possibly mechanize the proofs of) the meta-theoretical
properties we have stated in every chapter.

The meta-theory of quantified class constraints is already being under
development, mainly by Gert-Jan Bottu, Tom Schrijvers, and Ningning Xie.
The meta-theory of bidirectional instances is also under development, mainly by
Koen Pawels (under the supervision of the author of this thesis), in collaboration
with Gert-Jan Bottu, Tom Schrijvers, and Ningning Xie.

Moreover, if the four extensions (quantified class constraints, functional
dependencies, bidirectional instances, and constraint disjunction) can coexist
within the same system, we would like to prove the corresponding meta-
theoretical properties for the complete system.

From Type Classes to a Fragment of Second-order Logic

Last but not least, we would like to investigate the extension of our systems
with quantification over predicates7, effectively raising the power of type classes
to (a fragment of) second-order logic. Alternatively, one might achieve similar
results by combining the results we presented in Chapter 7, with GHC extension
ConstraintKinds, but none of the two approaches is studied yet. We would
like to pursue this line of work in the near future.

7See for example GHC feature request #5927.

https://ghc.haskell.org/trac/ghc/ticket/5927

Appendix A

Basic System: Additional
Judgments

A.1 Program and Declaration Typing

The specification of program typing (with elaboration) for the basic system
we omitted in Section 6.3 is presented in Figure A.1. Essentially, judgment

P̀GM pgm : P; Γ decl checks a program pgm, via the auxiliary judgment
P; Γ D̀CL decl : P ′; Γ′ decl. The latter, straightforwardly combines the
judgments we gave in Section 6.3 (Γ C̀LS cls : P; Γ′ decl for class declarations,
P; Γ ÌNS ins : P ′ decl for instance declarations, and P; Γ V̀AL val : Γ′ decl
for value bindings) to check each kind of declaration. In parallel, it combines
the environment extensions induced by each declaration.

239

240 BASIC SYSTEM: ADDITIONAL JUDGMENTS

Figure A.1 Basic System: Program Typing with Elaboration

P̀GM pgm : P; Γ decl Program Typing

•; • D̀CL decl : P; Γ decl

P̀GM decl : P; Γ decl
Pgm

P; Γ D̀CL decl : P ′; Γ′ decl Declaration Typing

P; Γ D̀CL • : P; Γ •
NilD

Γ C̀LS cls : Γc; Pc declc P,Pc; Γ,Γc D̀CL decl : Pd; Γd decld
P; Γ D̀CL (cls; decl) : Pd; Γd declc; decld

ClsD

P; Γ ÌNS ins : Pi decli P,Pi; Γ D̀CL decl : Pd; Γd decld
P; Γ D̀CL (ins; decl) : Pd; Γd decli; decld

InsD

P; Γ V̀AL val : Γv declv P; Γ,Γv D̀CL decl : Pd; Γd decld
P; Γ D̀CL (val; decl) : Pd; Γd declv; decld

ValD

Appendix B

Functional Dependencies:
Additional Material

This chapter presents additional material related to Chapter 8.

B.1 Constraint Schemes, CHRs and System FC

In this section we informally illustrate that both our specification of typing for
functional dependencies (Section 8.3) and our elaboration algorithm (Section 8.5)
have semantics compatible with the Constraint Handling Rules of Sulzmann
et al. (2007b).

B.1.1 Class CHRs

According to Sulzmann et al., a class declaration

class ∀ab. π ⇒ TC a | fd1, . . . , fdm

gives rise to two kinds of constraint handling rules:

Class CHR. The class chr takes the form rule TC a =⇒ π, that is, almost
the same as Scheme CS1a:

SCπ = ∀a. TC a⇒ θ(π) ∀π

241

242 FUNCTIONAL DEPENDENCIES: ADDITIONAL MATERIAL

where θ = det(a, π). The main difference between the two is the substitution
θ, which essentially replaces all skolem variables b in π with their (known)
counterparts.1

The CHR has a direct interpretation into System FC, as a match context:

E = case (d : TTC a) of { . . . }

Within the scope of E, both b and π are available. The elaboration of the
constraint scheme is slightly more complex. Matching against all superclass
constraints π recursively makes available all coercions that connect b with a.
Composed, they can be used to cast the type of the superclass constraints to
θ(π). As an example, consider the following definitions:

class C a b | a→ b
class C a b⇒ D a

The corresponding constraint scheme is

∀a. D a⇒ C a (FC a)

and is witnessed by the following function:

f = Λa. λ(d1 : TD a). case d1 of
TD b (d2 : TC a b)→ case d2 of

TC (ω : FC a ∼ b)→ d2 . 〈TC〉 〈a〉 (sym ω)

This explains why we strictly require that b ⊆ dom(θ): if the restriction does
not hold, there are superclass constraint schemes that cannot be elaborated in
System FC. Such declarations are ambiguous (and thus rejected anyway), so
this restriction does not affect the expressive power of the system.

Functional Dependency CHRs. For each functional dependency fdi ≡
ai1 . . . ain → ai0 , we have rule TC a, TC θ(b) =⇒ ai0 ∼ bi0 , where

θ(bj) =
{
aj , if j ∈ {i1, . . . , in}
bj , otherwise

This rule is derivable using Scheme CS1b twice as follows:

TC a

FTCi a
in ∼ ai0

1b

ai0 ∼ FTCi a
in

Sym

TC θ(b)
FTCi θ(b

in) ∼ θ(bi0)
1b

FTCi a
in ∼ bi0

θ

ai0 ∼ bi0
o
9

1If we restrict ourselves to cases where b ⊆ dom(θ), both our specification and the inference
(with elaboration) are well-behaved.

CONSTRAINT SCHEMES, CHRS AND SYSTEM FC 243

The System FC counterpart of this constraint scheme is the combination of two
match contexts

E = case (d1 : TTC a) of
TTC . . . ω1 · · · → case (d2 : TTC θ(b)) of

TTC . . . ω2 · · · → �

and a local coercion γ = (sym ωi1) o
9 ωi2. Notice the importance of the match

context, for the well-scopedness of the coercion: sub-coercions ωi1 and ωi2 are
available only within the scope of the match context.

B.1.2 Instance CHRs

Let there be an instance declaration

instance ∀ab. π ⇒ TC u

According to Sulzmann et al., it also gives rise to two kinds of constraint
handling rules:

Instance CHR. The instance rule takes the form

rule TC u ⇐⇒ π

which, according to CHR semantics, means that instead of proving TC u, one
suffices to prove π. That is, we can always derive TC u from π. This directly
corresponds to Scheme CS2a:

SIπ = ∀a. θ(π)⇒ TC u

where θ = det(a, π). The interpretation of this scheme is the expected dictionary
constructor, where b are appropriately instantiated. For a system that does not
support the type substitution property, this wouldn’t necessarily be accepted,
since the quantification over b is non-parametric. Yet, as we illustrated in
Chapter 8, our system does, and our instantiation is (by construction) the
expected.

Instance Improvement CHRs. For each functional dependency fdi ≡
ai1 . . . ain → ai0 , we have rule TC θ′(b) =⇒ ui0 ∼ bi0 , where

θ′(bj) =
{
uj , if j ∈ {i1, . . . , in}
bj , otherwise

244 FUNCTIONAL DEPENDENCIES: ADDITIONAL MATERIAL

We can derive this rule, by combining Schemes CS1b and CS2b:

FTCi u
in ∼ θ(ui0)

2b

θ(ui0) ∼ FTCi u
in

Sym

TC θ′(b)
FTCi θ

′(bin) ∼ θ′(bi0)
1b

FTCi u
in ∼ bi0

θ′

θ(ui0) ∼ bi0
o
9

The corresponding System FC term has exactly the same structure: a local
pattern match (encoding Scheme CS1b) against the dictionary of type (TC θ′(b))
in order to expose equality FTCi u

in ∼ bi0 , which is then combined with top-level
axiom θ(ui0) ∼ FTCi u

in (from Scheme CS2b) to produce θ(ui0) ∼ bi0 .

Notice that, similarly to the Instance CHR, we do not actually prove ui0 ∼ bi0 ,
but the refined θ(ui0) ∼ bi0 .

B.2 Poly-kinded, Generic Type Projections

Even though we omitted kinds from our main presentation for brevity, it is quite
straightforward to extend the system of Section 8.3 with kind checking (quite
cumbersome though). More importantly, if we further extend the system with
kind polymorpism (Yorgey et al., 2012) – which is also straightforward – there
is no need to axiomatize the projection functions we presented in Section 8.3.5
for each data type. Instead, we can perform type projection generically, using
only two user-defined kind-polymorphic type families L and R, along with two
axioms:

type L : ∀κ1 κ2. (a : κ1)→ κ2
type R : ∀κ1 κ2. (a : κ1)→ κ2

axiom projL : L ((u1 : κ2 → κ1) (u2 : κ2)) ∼ u1
axiom projR : R ((u1 : κ2 → κ1) (u2 : κ2)) ∼ u2

For example, instead of the axioms Fst (a, b) ∼ a and Snd (a, b) ∼ b, we can
extract the first and the second component of a tuple type τ as follows:

Fst τ ≡ R (L τ)
Snd τ ≡ R τ

ELABORATION OF TOP-LEVEL VALUE BINDINGS 245

Figure B.1 Elaboration of Top-level Bindings
P; Γ V̀AL val : Γv decl Value Binding Elaboration

Γ T̀M e : τ t | Π1; E1
P È (Π1, E1) ! (Π2, E2); θ; η a = fuv(Π2, E2, θ(τ))
σ = ∀a. (erase(E2), erase(Π2))⇒ θ(τ) Γ T̀Y σ υ

P; Γ V̀AL (x = e) : [x : σ] let x : υ = Λa. ΛE2. λΠ2. θ(η(t))
Val

Furthermore, this approach is strictly more powerful than the projection
functions of Section 8.3.5. Consider the following example:2

class A a b | a→ b
class B a b | a→ b
class C a b | a→ b

instance (Functor f,A a (f b), B b c)⇒ C a c

In the instance for C, c is determined by a, indirectly through b. Yet, (f b) is not
a type constructor application of the form T a, so b cannot be extracted using
a projection function of the form ProjT

i (·). Using the polymorphic projection
functions L and R though, we can easily derive the implied axiom from the
above instance. We have the following implications:

A a (f b) =⇒ FA a ∼ f b =⇒ b ∼ R (FA a)
B b c =⇒ FB b ∼ c =⇒ c ∼ FB b

Thus, the derived axiom for FC is the following:

axiom FC a : FC a ∼ FB (R (FA a))

B.3 Elaboration of Top-level Value Bindings

Relation P; Γ V̀AL val : Γv decl performs type inference (and elaboration into
System FC) for top-level bindings. It is given by a single rule, presented in
Figure B.1.3

To stay in line with the primary goal of functional dependencies, type
improvement (Jones, 1995c), once we have inferred the type of the binding we

2Michiel Dehaeg, personal communication.
3fuv(·) computes the free unification variables of types and constraints.

246 FUNCTIONAL DEPENDENCIES: ADDITIONAL MATERIAL

perform simplification, via constraint entailment. Function erase(·) removes all
evidence annotations from either class constraints Π or equality constraints E .

Notice that, for simplicity, we have considered only top-level bindings without
type signatures (just as we did for the basic system and our first extension)
but it is extremely straightforward to allow explicit type annotations. A top-
level binding val ≡ (x :: σ) = e can be handled by the type-checking relation
P; Γ T̀M e : σ t we gave in Section 8.5.6:

P; Γ T̀M e : σ t Γ T̀Y σ υ

P; Γ V̀AL (x :: σ = e) : Γv let x : υ = t
ValAnn

Index

Chapter 2
K , 12
p � v, 18
T , 12

Chapter 3
M , 52
Q, 39
V,W , 50
∆, 39
JSK = ~V , 51
JΓK = θ, 51
J~pK(~V) = 〈~V c, ~V u, ~V ⊥〉〉, 51
J~pKθ(~V) = M , 51
C ~p v, 41
D ~p v, 41
U ~p v, 41
patVecProc(·, ·), 41
τc, 50
`Sat w, 41
a, b, a′, b′, . . . , 39
f, g, x, y, . . . , 34
u,w, 39
v, 39
kcon, 42
tail, 43
ucon, 43
c, 34
G, 34
p, q, 34
K , 34

translatec(C) = ~p, 36
translateg(G) = ~p, 36
translate~g(~G) = ~p, 38
translatep(P) = ~p, 36
translate~p(~P) = ~p, 37
e, 34
S ,C ,U ,D , 51
S ,C ,U ,D, 39
C , 31
D, 31
U , 31
C, 34
G, 34
P, 34
T , 39
τ , 39

V̀ V : τc, 50
Γ È e : τ , 50
Γ, 39

Chapter 4
mapR, 64
Match(~p, S) W R, 67
Match(~p, v) ⇓ R, 65
R, 64
e′, 81
p, q, 67
u,w, 67

Chapter 5
Section 5.2
V , 93

247

248 INDEX

erase(t), 94
t1 −→ t2, 92
Γ T̀M t : υ, 92
Γ T̀Y υ, 92
υ, 92
Γ, 92
t, 92

Section 5.3
E , 100
Γ T̀M e : τ t | E , 101
erase(t), 106

G̀EN e : σ t, 101
Γ |= σ0 � σ, 104
Γ T̀M e : σ t, 99
Γ T̀Y σ υ, 99
unify(E) = θ⊥, 101
τ , 98
σ, 98
Γ, 99
θ, 100
e, 98

Section 5.4
fn, 110
pn, 111
t, 110
φ, 111

Chapter 6
TC, 122
Π, 123
Q, 123
S, 123
C, 123
A, 123
π, 122
cls, 122
Q, 122
S , 122
C , 122
decl, 122
η, 128
P; Γ |= σ1 � σ2, 134
P, 122

projiTC(d), 127
ins, 122
E, 132
τ , 122
mponens∗(a,AS , CL) =

(C′L,E), 132
mponens(a,A,Π) = (CL,E),

132
‖Q‖ = N, 136
‖τ‖ = N, 136
occa(Q) = N, 136
occa(τ) = N, 136
σ, 122
pgm, 122
ρ, 122
ScClosure(a,P) = (A,E), 132
elabCT(Q) = υ, 129
P; Γ ÌNS ins : P ′ decl, 133
Γ T̀M e : τ t | C ; E , 128
elabTY(σ) = υ, 129
P; Γ V̀AL val : Γ′ decl, 133
P; Γ |= t : Q, 125
a; A |= C1 C2; η, 130
a; A |= Q C; η, 130
a; P; Γ T̀M e : σ t, 134
Γ C̀LS cls : PS ; Γc decl, 126
Γ C̀T Q υ, 124
P; Γ ÌNS ins : Pi decl, 126

P̀GM pgm : P; Γ decl, 127
P; Γ T̀M e : σ t, 124
Γ T̀Y σ υ, 123
P; Γ V̀AL val : Γ′ decl, 126
unamb(S), 137
unify(a; E) = θ⊥, 130
term(S), 136
Γ, 122
val, 122
d, 122
e, 122
Section 6.1

Γ, 119
t1 −→ t2, 120

INDEX 249

Γ D̀ decl : Γ′, 120
Γ P̀ p → t : υ1 → υ2, 120
Γ T̀M t : υ, 119
Γ T̀Y υ, 119
decl, 118
pgm, 118
p, 118
υ, 118
t, 118

Chapter 7
Q, 144
P, 144
elabCT(Q) = υ, 152
a; P |= C1 C2; η, 154
P; Γ |= t : Q, 147, 149
head(Q) = π, 157
a; [Q] |= Π C; θ; η, 154
Γ; t : [Q] |= t′ : π C, 149
a; P |= [Q] C; η, 154
P; Γ |= t : [Q], 149
Γ C̀T Q υ, 146
term(Q), 157
a ÙNAMB Q, 151
unamb(Q), 151

Chapter 8
Π, 189
α, β, 189
binds(E) = Γ; P, 190
cls, 172
Q, 172
P È Q C ; θ; η, 195
P È C ∗ C; θ; η, 195
a; π D̀ • ! θ, 180
det(a, π) = θ, 180
a; π D̀ θ1 θ2, 180
Γ C̀LS cls decl | Γc, 196
P; Γ ÌNS ins decl |Pi, 197
Γ T̀M e : τ t | Π; E , 191
P; Γ V̀AL val : Γv decl, 195
Pinst S̀C (TC u) (τ , t, γ), 198
η, 189
fd, 172

π, 172
elabCC(π) = υ, 192
elabEQ(φ) = ψ, 192
elabPT(P) = Γ, 192
elabTE(Γ) = Γ′, 192
elabTY(σ) = υ, 192
I ; Γ |= S , 179
φ, 172
ProjT

i (·), 181
I ; Γ |= σ0 � σ, 203
I ; Γ C̀LS cls : Ic; Γc, 179
Γ C̀T Q, 178
Ic; Ii; Γ ÌNS ins : I , 179

P̀GM pgm, 180
I ; Γ T̀M e : σ, 177
Γ T̀Y σ, 178
I ; Γ1 V̀AL val : Γ2, 179
unambig(b, a, π), 180
fixed(τ) = a, 203
P, 189
SI ↪→ Pax , 197
ins, 172
Π ⇓ E, 190
E, 190
C, 189
E , 189
Q, 189
I , 177
closure(a, π), 180
τ , 172
P Ù ω : τ1 ∼ τ2 E ; θ; η, 194
P; Γ T̀M e : σ t, 197
θ, 189
F , 172
u, 172
P R̀ τ τ ′; γ, 193
Section 8.4

Γ, 184
compat(φ1, φ2), 188
decl, 186
t1 −→ t2, 187
Γ C̀O γ : ψ, 185

250 INDEX

Γ1 D̀ decl : Γ2, 187
Γ P̀ p → t : υ1 → υ2, 186
Γ P̀R ψ, 183
Γ T̀M t : υ, 184
Γ T̀Y υ, 183
γ, 183
p, 185
ω, 184
ψ, 183

υ, 182
g, 184
t, 184
u, 186

Chapter 9
ctxProjiTC(d), 218
InvScClosure(a,P) = (A,E),

219
P, 216

Bibliography

Andreoli, J.-m. (1992). Logic programming with focusing proofs in linear logic.
Journal of Logic and Computation, 2:297–347.

Augustsson, L. (1985). Compiling pattern matching. In Proceedings of the 1985
Conference on Functional Programming and Computer Architecture.

Augustsson, L. and Petersson, K. (1994). Silly type families. http://web.cecs.
pdx.edu/~sheard/papers/silly.pdf.

Bird, R. S. and Meertens, L. G. L. T. (1998). Nested datatypes. In MPC ’98,
pages 52–67. Springer.

Bjørner, N. S. (1994). Minimal typing derivations. In In ACM SIGPLAN
Workshop on ML and its Applications, pages 120–126.

Böhm, C. and Berarducci, A. (1985). Automatic synthesis of typed λ-programs
on term algebras. Theoretical Computer Science, 39(0):135 – 154.

Brady, E. (2013). Idris, a general-purpose dependently typed programming
language: Design and implementation. Journal of Functional Programming,
23:552–593.

Burstall, R. M., MacQueen, D. B., and Sannella, D. T. (1980). HOPE:
An experimental applicative language. In Proceedings of the 1980 ACM
Conference on LISP and Functional Programming, LFP ’80, pages 136–143,
New York, NY, USA. ACM.

Chakravarty, M. M. T., Keller, G., and Jones, S. P. (2005a). Associated type
synonyms. SIGPLAN Not., 40(9):241–253.

Chakravarty, M. M. T., Keller, G., Jones, S. P., and Marlow, S. (2005b).
Associated types with class. SIGPLAN Not., 40(1):1–13.

Chauhan, S., Kurur, P. P., and Yorgey, B. A. (2016). How to twist pointers
without breaking them. In Haskell 2016, pages 51–61. ACM.

251

http://web.cecs.pdx.edu/~sheard/papers/silly.pdf
http://web.cecs.pdx.edu/~sheard/papers/silly.pdf

252 BIBLIOGRAPHY

Cheney, J. and Hinze, R. (2003). First-class phantom types. Technical report,
Cornell University.

Church, A. (1936). An unsolvable problem of elementary number theory.
American Journal of Mathematics, 58(2):354–363.

Claessen, K., Johansson, M., Rosén, D., and Smallbone, N. (2013). Automating
inductive proofs using theory exploration. In Bonacina, M. P., editor, CADE,
volume 7898 of Lecture Notes in Computer Science, pages 392–406. Springer.

Coquand, T. (1992). Pattern matching with dependent types. In Proceedings
of the Workshop on Types for Proofs and Programs.

Damas, L. and Milner, R. (1982). Principal type-schemes for functional programs.
In POPL ’82, pages 207–212. ACM.

Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., and Black, A. P. (2006).
Traits: A mechanism for fine-grained reuse. ACM Trans. Program. Lang.
Syst., 28(2):331–388.

Duck, G. J., Peyton-Jones, S., Stuckey, P. J., and Sulzmann, M. (2004). Sound
and decidable type inference for functional dependencies. In TOPLAS, volume
2986 of Lecture Notes in Computer Science, pages 49–63. Springer.

Dunfield, J. (2007a). Refined typechecking with Stardust. In Proceedings of
the 2007 Workshop on Programming Languages Meets Program Verification,
PLPV ’07, pages 21–32, New York, NY, USA. ACM.

Dunfield, J. (2007b). A Unified System of Type Refinements. PhD thesis,
Carnegie Mellon University. CMU-CS-07-129.

Eisenberg, R. A., Vytiniotis, D., Peyton Jones, S., and Weirich, S. (2014).
Closed type families with overlapping equations. In POPL ’14.

Erwig, M. and Peyton Jones, S. (2000). Pattern guards and transformational
patterns. In Proceedings of the 2000 Haskell Symposium. ACM.

Frühwirth, T. W. (1995). Constraint handling rules. In Selected Papers from
Constraint Programming: Basics and Trends, pages 90–107. Springer-Verlag.

Fu, P., Komendantskaya, E., Schrijvers, T., and Pond, A. (2016). Proof relevant
corecursive resolution. In FLOPS 2016, pages 126–143. Springer.

Garrigue, J. and Normand, J. L. (2011). Adding GADTs to OCaml: the direct
approach. In Workshop on ML.

Garrigue, J. and Normand, J. L. (2015). GADTs and exhaustiveness: Looking
for the impossible. In ML Family/OCaml.

BIBLIOGRAPHY 253

Gentzen, G. (1935). Untersuchungen über das logische schließen. i.
Mathematische Zeitschrift, 39(1):176–210.

Girard, J.-Y. (1972). Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, PhD thesis, Université Paris
VII.

Gregor, D., Järvi, J., Siek, J., Stroustrup, B., Dos Reis, G., and Lumsdaine,
A. (2006). Concepts: Linguistic support for generic programming in c++.
SIGPLAN Not., 41(10):291–310.

Hall, C. V., Hammond, K., Peyton Jones, S. L., and Wadler, P. L. (1996). Type
Classes in Haskell. ACM Trans. Program. Lang. Syst., 18(2).

Hallgren, T. (2000). Fun with functional dependencies. In Proc. of the Joint
CS/CE Winter Meeting.

Harrop, R. (1956). On disjunctions and existential statements in intuitionistic
systems of logic. Mathematische Annalen, 132(4):347–361.

Henderson, F., Conway, T., Somogyi, Z., Jeffery, D., Schachte, P., Taylor, S.,
and Speirs, C. (1996). The mercury language reference manual. Technical
report.

Hilbert, D. and Bernays, P. (1934). Grundlagen der Mathematik, volume 1
of Die Grundlehren der mathematischen Wissenschaften. Verlag von Julius
Springer.

Hindley, R. (1969). The Principal Type-Scheme of an Object in Combinatory
Logic. Transactions of the American Mathematical Society, 146:29–60.

Hinze, R. (2000). Perfect trees and bit-reversal permutations. JFP, 10(3):305–
317.

Hinze, R. (2010). Adjoint folds and unfolds: Or: Scything through the thicket
of morphisms. In MPC’10, pages 195–228. Springer.

Hinze, R. and Peyton Jones, S. (2000). Derivable type classes. In Proceedings
of the Fourth Haskell Workshop, pages 227–236. Elsevier Science.

Jaskelioff, M. (2011). Monatron: an extensible monad transformer library. In
IFL’08, pages 233–248, Berlin, Heidelberg. Springer.

Johann, P. and Ghani, N. (2008). Foundations for structured programming
with gadts. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’08, pages 297–
308, New York, NY, USA. ACM.

254 BIBLIOGRAPHY

Jones, M. (2010). The Habit Programming Language: The Revised Preliminary
Report.

Jones, M. P. (1992). A theory of qualified types. In Krieg-Brückner, B., editor,
ESOP ’92, volume 582 of LNCS, pages 287–306. Springer Berlin Heidelberg.

Jones, M. P. (1993). A system of constructor classes: Overloading and implicit
higher-order polymorphism. In FPCA ’93, pages 52–61. ACM.

Jones, M. P. (1995a). Functional programming with overloading and higher-
order polymorphism. In Advanced Functional Programming, pages 97–136.
Springer.

Jones, M. P. (1995b). Qualified Types: Theory and Practice. Cambridge
University Press.

Jones, M. P. (1995c). Simplifying and improving qualified types. In FPCA ’95,
pages 160–169. ACM.

Jones, M. P. (2000). Type classes with functional dependencies. In Programming
Languages and Systems, volume 1782 of Lecture Notes in Computer Science.
Springer.

Jones, M. P. and Diatchki, I. S. (2008). Language and program design for
functional dependencies. SIGPLAN Not., 44(2):87–98.

Jones, S. P., Jones, M., and Meijer, E. (1997). Type classes: an exploration of
the design space. In Proceedings of the 1997 Haskell Workshop. ACM.

Karachalias, G., Schrijvers, T., Vytiniotis, D., and Jones, S. P. (2015). GADTs
meet their match: Pattern-matching warnings that account for GADTs,
guards, and laziness. In Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2015, pages 424–436, New
York, NY, USA. ACM.

Kiselyov, O., Lämmel, R., and Schupke, K. (2004). Strongly typed heterogeneous
collections. In Haskell ’04, pages 96–107. ACM.

Kmett, E. A. (2017). The constraint package. https://hackage.haskell.
org/package/constraints-0.9.1.

Koot, R. and Hage, J. (2015). Type-based exception analysis for non-strict
higher-order functional languages with imprecise exception semantics. In
Proceedings of the 2015 Workshop on Partial Evaluation and Program
Manipulation, PEPM ’15, pages 127–138, New York, NY, USA. ACM.

Kowalski, R. (1974). Predicate logic as programming language. In Proceedings
of IFIP ’74, pages 569 – 574, North Holland.

https://hackage.haskell.org/package/constraints-0.9.1
https://hackage.haskell.org/package/constraints-0.9.1

BIBLIOGRAPHY 255

Krishnaswami, N. R. (2009). Focusing on pattern matching. In Proceedings
of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’09, pages 366–378, New York, NY, USA.
ACM.

Lämmel, R. and Peyton Jones, S. (2003). Scrap your boilerplate: A practical
design pattern for generic programming. SIGPLAN Not., 38(3):26–37.

Lämmel, R. and Peyton Jones, S. (2005). Scrap your boilerplate with class:
Extensible generic functions. SIGPLAN Not., 40(9):204–215.

Laville, A. (1991). Comparison of priority rules in pattern matching and term
rewriting. J. Symb. Comput., 11(4):321–347.

Le Fessant, F. and Maranget, L. (2001). Optimizing pattern-matching. In
Proceedings of the 2001 International Conference on Functional Programming.

Liang, C. and Miller, D. (2009). Focusing and polarization in linear, intuitionistic,
and classical logics. Theor. Comput. Sci., 410(46):4747–4768.

Lindahl, T. and Sagonas, K. (2004). Detecting software defects in telecom
applications through lightweight static analysis: A war story. In Chin,
W.-N., editor, Programming Languages and Systems, pages 91–106, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Maranget, L. (1992). Compiling lazy pattern matching. In Proceedings of the
1992 ACM Conference on LISP and Functional Programming, LFP ’92, pages
21–31, New York, NY, USA. ACM.

Maranget, L. (2007). Warnings for pattern matching. Journal of Functional
Programming, 17:387–421.

Maranget, L. (2008). Compiling pattern matching to good decision trees. In
Proceedings of the ACM Workshop on ML.

Maranget, L. and Para, P. (1994). Two techniques for compiling lazy pattern
matching. Technical report.

Martelli, A. and Montanari, U. (1982). An efficient unification algorithm. ACM
Trans. Program. Lang. Syst., 4(2):258–282.

The Coq development team (2004). The Coq proof assistant reference manual.
LogiCal Project. Version 8.0.

McBride, C. and McKinna, J. (2004). The view from the left. Journal of
Functional Programming, 14(1):69–111.

256 BIBLIOGRAPHY

Miller, D., Nadathur, G., Pfenning, F., and Scedrov, A. (1989). Uniform proofs
as a foundation for logic programming. Technical report.

Milner, R. (1978). A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17:348–375.

Mitchell, N. and Runciman, C. (2008). Not all patterns, but enough: An
automatic verifier for partial but sufficient pattern matching. In Proceedings
of the First ACM SIGPLAN Symposium on Haskell, Haskell ’08, pages 49–60,
New York, NY, USA. ACM.

Morris, J. G. (2014). A simple semantics for haskell overloading. SIGPLAN
Not., 49(12):107–118.

Morris, J. G. and Eisenberg, R. A. (2017). Constrained type families. Proc.
ACM Program. Lang., 1(ICFP):42:1–42:28.

Musser, D. R. and Stepanov, A. A. (1989). Generic programming. In Gianni, P.,
editor, Symbolic and Algebraic Computation, pages 13–25, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Norell, U. (2007). Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineering,
Chalmers University of Technology, SE-412 96 Göteborg, Sweden.

Norell, U. (2009). Dependently typed programming in agda. In Proceedings of the
4th International Workshop on Types in Language Design and Implementation,
TLDI ’09, pages 1–2, New York, NY, USA. ACM.

Oliveira, B. C., Schrijvers, T., Choi, W., Lee, W., and Yi, K. (2012). The
implicit calculus: A new foundation for generic programming. In Proceedings
of the 33rd ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’12, pages 35–44, New York, NY, USA. ACM.

Peano, G. (1889). Arithmetices principia: nova methodo exposita. Fratres
Bocca.

Peyton Jones, S. (1997). Bulk types with class. In Proceedings of the Second
Haskell Workshop.

Peyton Jones, S. (2003). Haskell 98 Language and Libraries: The Revised
Report. Journal of functional programming. Cambridge University Press.

Peyton Jones, S., Vytiniotis, D., Weirich, S., and Washburn, G. (2006). Simple
unification-based type inference for gadts. SIGPLAN Not., 41(9):50–61.

BIBLIOGRAPHY 257

Pickering, M., Érdi, G., Peyton Jones, S., and Eisenberg, R. A. (2016). Pattern
synonyms. In Proceedings of the 9th International Symposium on Haskell,
Haskell 2016, pages 80–91, New York, NY, USA. ACM.

Pierce, B. C. (2002). Types and Programming Languages. The MIT Press, 1st
edition.

Ramsey, N., Dias, J. a., and Peyton Jones, S. (2010). Hoopl: A modular,
reusable library for dataflow analysis and transformation. SIGPLAN Not.,
45(11):121–134.

Reynolds, J. C. (1974). Towards a theory of type structure. In Programming
Symposium, Proceedings Colloque Sur La Programmation, pages 408–423,
London, UK, UK. Springer-Verlag.

Reynolds, J. C. (1983). Types, abstraction, and parametric polymorphism. In
Mason, R., editor, Information Processing 83, pages 513–523, North Holland,
Amsterdam.

Robinson, J. A. (1965). A machine-oriented logic based on the resolution
principle. J. ACM, 12(1):23–41.

Rondon, P. M., Kawaguci, M., and Jhala, R. (2008). Liquid types. In Proceedings
of the 2008 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’08, pages 159–169, New York, NY, USA. ACM.

Sagonas, K., Silva, J., and Tamarit, S. (2013). Precise explanation of success
typing errors. In Proceedings of the ACM SIGPLAN 2013 Workshop on
Partial Evaluation and Program Manipulation, PEPM ’13, pages 33–42, New
York, NY, USA. ACM.

Schrijvers, T. and Oliveira, B. C. (2011). Monads, zippers and views:
Virtualizing the monad stack. SIGPLAN Not., 46(9):32–44.

Schrijvers, T., Oliveira, B. C. d. S., and Wadler, P. (2017). Cochis: Deterministic
and coherent implicits. Report CW 705, KU Leuven.

Schrijvers, T., Peyton Jones, S., Chakravarty, M., and Sulzmann, M. (2008).
Type checking with open type functions. In ICFP ’08, pages 51–62. ACM.

Schrijvers, T., Peyton Jones, S., Sulzmann, M., and Vytiniotis, D. (2009).
Complete and decidable type inference for GADTs. In Proceedings of the
14th ACM SIGPLAN International Conference on Functional Programming,
ICFP ’09, pages 341–352, New York, NY, USA. ACM.

Schrijvers, T. and Sulzmann, M. (2008). Unified type checking for classes and
type families.

258 BIBLIOGRAPHY

Schrijvers, T., Sulzmann, M., Peyton Jones, S., and Chakravarty, M. (2007).
Towards open type functions for Haskell. In IFL ’07, pages 233–251.

Sekar, R. C., Ramesh, R., and Ramakrishnan, I. V. (1995). Adaptive pattern
matching. SIAM J. Comput., 24(6):1207–1234.

Serrano, A., Hage, J., and Bahr, P. (2015). Type families with class, type classes
with family. SIGPLAN Not., 50(12):129–140.

Sestoft, P. (1996). ML pattern match compilation and partial evaluation. In
Danvy, O., Glück, R., and Thiemann, P., editors, Partial Evaluation, volume
1110 of Lecture Notes in Computer Science, pages 446–464. Springer Berlin
Heidelberg.

Shärli, N., Ducasse, S., Nierstrasz, O., and Black, A. (2002). Traits: Composable
units of behavior. Technical report.

Sheard, T. (2004). Languages of the future. In In OOPSLA ’04: Companion to
the 19th annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, pages 116–119. ACM Press.

Silberschatz, A., Korth, H., and Sudarshan, S. (2006). Database Systems
Concepts. McGraw-Hill, Inc., 5 edition.

Sonnex, W., Drossopoulou, S., and Eisenbach, S. (2012). Zeno: An automated
prover for properties of recursive data structures. pages 407–421. Springer-
Verlag Berlin.

Sozeau, M. and Oury, N. (2008). First-class type classes. In TPHOLs 2008,
pages 278–293.

Spivey, M. (2017). Faster coroutine pipelines. Proc. ACM Program. Lang.,
1(ICFP):5:1–5:23.

Stolarek, J., Peyton Jones, S., and Eisenberg, R. A. (2015). Injective type
families for Haskell. SIGPLAN Not., 50(12):118–128.

Stuckey, P. J. and Sulzmann, M. (2005). A theory of overloading. ACM Trans.
Program. Lang. Syst., 27(6):1216–1269.

Sulzmann, M., Chakravarty, M. M. T., Jones, S. P., and Donnelly, K. (2007a).
System F with type equality coercions. In TLDI ’07. ACM.

Sulzmann, M., Duck, G. J., Peyton-Jones, S., and Stuckey, P. J. (2007b).
Understanding functional dependencies via constraint handling rules. J.
Funct. Program., 17(1):83–129.

BIBLIOGRAPHY 259

Tarski, A. (1933). The concept of truth in the languages of the deductive
sciences (Polish). Prace Towarzystwa Naukowego Warszawskiego, Wydzial III
Nauk Matematyczno-Fizycznych 34.

Trifonov, V. (2003). Simulating quantified class constraints. In Haskell ’03,
pages 98–102. ACM.

Urzyczyn, P. (1997). Inhabitation in typed lambda-calculi (a syntactic approach).
In Proceedings of the Third International Conference on Typed Lambda Calculi
and Applications, TLCA ’97, pages 373–389, London, UK, UK. Springer-
Verlag.

Vazou, N., Seidel, E. L., Jhala, R., Vytiniotis, D., and Peyton-Jones, S. (2014).
Refinement types for Haskell. In Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’14, pages 269–
282, New York, NY, USA. ACM.

Vytiniotis, D., Peyton Jones, S., and Schrijvers, T. (2010). Let should not be
generalized. In TLDI ’10, pages 39–50. ACM.

Vytiniotis, D., Peyton jones, S., Schrijvers, T., and Sulzmann, M. (2011).
Outsidein(x) modular type inference with local assumptions. J. Funct.
Program., 21(4-5):333–412.

Vytiniotis, D., Weirich, S., and Peyton Jones, S. (2008). Fph: First-class
polymorphism for haskell. In Proceedings of the 13th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’08, pages 295–
306, New York, NY, USA. ACM.

Wadler, P. (1987a). Efficient compilation of pattern matching. In Peyton Jones,
S., editor, The implementation of functional programming languages, pages
78–103. Prentice Hall.

Wadler, P. (1987b). Views: A way for pattern matching to cohabit with data
abstraction. In Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’87, pages 307–313, New
York, NY, USA. ACM.

Wadler, P. (1989). Theorems for free! In Proceedings of the Fourth International
Conference on Functional Programming Languages and Computer Architecture,
FPCA ’89, pages 347–359, New York, NY, USA. ACM.

Wadler, P. and Blott, S. (1989). How to make ad-hoc polymorphism less ad
hoc. In POPL ’89, pages 60–76. ACM.

Weirich, S., Hsu, J., and Eisenberg, R. A. (2013). System fc with explicit kind
equality. SIGPLAN Not., 48(9):275–286.

260 BIBLIOGRAPHY

Weirich, S., Voizard, A., de Amorim, P. H. A., and Eisenberg, R. A. (2017).
A specification for dependent types in haskell. Proc. ACM Program. Lang.,
1(ICFP):31:1–31:29.

Weirich, S., Vytiniotis, D., Peyton Jones, S., and Zdancewic, S. (2011).
Generative type abstraction and type-level computation. In Proceedings
of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’11, pages 227–240, New York, NY, USA.
ACM.

Wells, J. B. (1993). Typability and type checking in the second-order lambda-
calculus are equivalent and undecidable. Technical report, Boston, MA,
USA.

Wright, A. and Felleisen, M. (1994). A syntactic approach to type soundness.
Inf. Comput., 115(1):38–94.

Xi, H. (1998a). Dead code elimination through dependent types. In Proceedings
of the First International Workshop on Practical Aspects of Declarative
Languages, PADL ’99, pages 228–242, London, UK. Springer-Verlag.

Xi, H. (1998b). Dependent Types in Practical Programming. PhD thesis,
Carnegie Mellon University.

Xi, H. (2003). Dependently typed pattern matching. Journal of Universal
Computer Science, 9:851–872.

Xi, H., Chen, C., and Chen, G. (2003). Guarded recursive datatype constructors.
SIGPLAN Not., 38(1):224–235.

Xu, D. N. (2006). Extended static checking for Haskell. In Proceedings of the
2006 ACM SIGPLAN Workshop on Haskell, Haskell ’06, pages 48–59, New
York, NY, USA. ACM.

Xu, D. N., Peyton Jones, S., and Claessen, K. (2009). Static contract checking
for Haskell. In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’09, pages 41–52,
New York, NY, USA. ACM.

Yorgey, B. A., Weirich, S., Cretin, J., Peyton Jones, S., Vytiniotis, D., and
Magalhães, J. P. (2012). Giving Haskell a promotion. In Proceedings of the 8th
ACM SIGPLAN Workshop on Types in Language Design and Implementation,
TLDI ’12, pages 53–66, New York, NY, USA. ACM.

List of Publications

Papers at International Conferences and Symposia

Georgios Karachalias, Tom Schrijvers, Dimitrios Vytiniotis and Simon
Peyton Jones (2015). GADTs Meet Their Match: Pattern-matching
Warnings That Account for GADTs, Guards, and Laziness. In
Proceedings of the 20th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’15, pp. 424–436, Vancouver, BC,
Canada, August 31-September 2, 2015.

Georgios Karachalias and Tom Schrijvers (2017). Elaboration on
Functional Dependencies: Functional Dependencies Are Dead, Long Live
Functional Dependencies! In Proceedings of the 10th ACM SIGPLAN
International Symposium on Haskell, Haskell ’17, pp. 133–147, Oxford,
UK, September 7–8, 2017.

Gert-Jan Bottu, Georgios Karachalias, Tom Schrijvers, Bruno C. d. S.
Oliveira and Philip Wadler (2017). Quantified Class Constraints. In
Proceedings of the 10th ACM SIGPLAN International Symposium on
Haskell, Haskell ’17, pp. 148–161, Oxford, UK, September 7–8, 2017.

Amr Hany Saleh, Georgios Karachalias, Matija Pretnar, and Tom
Schrijvers (2018). Explicit Effect Subtyping. In Proceedings of the 27th
European Symposium on Programming, ESOP ’18, Thessaloniki, Greece,
April 16–19, 2018.

261

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

DTAI
Celestijnenlaan 200A box 2402

B-3001 Leuven
georgios.karachalias@cs.kuleuven.be

https://dtai.cs.kuleuven.be

	Abstract
	Contents
	Introduction
	Type Systems
	Thesis Overview and Scientific Output

	I Pattern Match Checking
	Background
	Algebraic Data Types and Pattern Matching
	Pattern Matching
	Generalized Algebraic Data Types
	Problem Statement

	Pattern Match Checking
	Our Approach
	Phase 1: Pattern Desugaring
	Phase 2: Pattern Match Checking
	Meta-theory
	Related Work
	Scientific Output

	GHC Implementation
	Alternative Formalization
	Empty Case Expressions
	Performance Improvements
	The Oracle
	Evaluation
	Scientific Output

	II Type Classes
	Background
	Polymorphism
	System F: The Polymorphic Lambda Calculus
	Type Reconstruction and Elaboration
	Type Classes: Ad-hoc Polymorphism in Haskell

	The Basic System
	Extended System F
	Syntax
	Typing and Elaboration into System F
	Type Inference with Elaboration into System F
	Meta-theoretical Properties
	Scientific Output

	Quantified Constraints
	Motivation
	Declarative Specification
	Type Inference with Elaboration
	Termination of Resolution
	Related Work
	Scientific Output

	Functional Dependencies
	Motivation
	Logical Reading of Functional Dependencies
	Type Checking
	Target Language: System FC
	Type Inference and Elaboration into System FC
	Meta-theory
	Related Work
	Scientific Output

	Bidirectional Instances
	Motivation
	Technical Challenges
	Bidirectional Instances
	Meta-theory
	Scientific Output

	Conclusion
	Aim of the Thesis
	Summary
	Ongoing and Future Work

	Basic System: Additional Judgments
	Program and Declaration Typing

	Functional Dependencies: Additional Material
	Constraint Schemes, CHRs and System FC
	Poly-kinded, Generic Type Projections
	Elaboration of Top-level Value Bindings

	Index
	Bibliography
	List of Publications

