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Resolution and subtyping are two common mechanisms in programming languages. Resolution is used by

features such as type classes or Scala-style implicits to synthesize values automatically from contextual

type information. Subtyping is commonly used to automatically convert the type of a value into another

compatible type. So far the two mechanisms have been considered independently of each other. This paper

shows that, with a small extension, subtyping with intersection types can subsume resolution. This has

three main consequences. Firstly, resolution does not need to be implemented as a separate mechanism.

Secondly, the interaction between resolution and subtyping becomes apparent. Finally, the integration of

resolution into subtyping enables first-class (implicit) environments. The extension that recovers the power of

resolution via subtyping is the modus ponens rule of propositional logic. While it is easily added to declarative

subtyping, significant care needs to be taken to retain desirable properties, such as transitivity and decidability
of algorithmic subtyping, and coherence. To materialize these ideas we develop _MP

𝑖
, a calculus that extends a

previous calculus with disjoint intersection types, and develop its metatheory in the Coq theorem prover.

CCS Concepts: • Software and its engineering → Functional languages; Object oriented languages;
Semantics.

Additional Key Words and Phrases: resolution, nested composition, family polymorphism, intersection types,

coherence, modus ponens

ACM Reference Format:
Koar Marntirosian, Tom Schrijvers, Bruno C. d. S. Oliveira, and Georgios Karachalias. 2020. Resolution as

Intersection Subtyping via Modus Ponens. Proc. ACM Program. Lang. 4, OOPSLA, Article 206 (November 2020),

43 pages. https://doi.org/10.1145/3428274

1 INTRODUCTION
Subtyping is a well-known programming language feature. It is most notably employed in object-

oriented languages, but there are many other uses of subtyping in the literature [Barendregt

et al. 1983; Chen 2003; Gay and Hole 2005; Pierce and Sangiorgi 1996]. Subtyping automatically

converts the type of a value into another compatible type. One particular form of subtyping arises

from intersection types [Barendregt et al. 1983; Reynolds 1991]. Intersection types support—among

others—a form of finitary overloading [Castagna et al. 1992]. For example, in various systems with

intersection types, it is possible to build overloaded functions such as:

f : (Int -> Int) & (Char -> Char) = succ ,, toUpper
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Themerge operator (,,) allows the function f to behave as both the succ and the toUpper functions.
Thus, f can be applied both to an integer and to a character. When applied to an integer, f behaves

like the successor function, whereas when applied to a character f capitalizes its input. The

automatic selection of the appropriate behavior (from the overloaded definition f) is based on the

type of the input, which triggers an upcast induced by the subtyping relation. For instance, in the

case of the application f 3, the input of the function must be Int and therefore, the following

upcast is triggered in such an application:

(Int -> Int) & (Char -> Char) <: Int -> Int

Resolution is another programming language mechanism. Haskell type classes [Wadler and Blott

1989] employ resolution to automatically search for and compose instances of type classes. Resolution
is also used by Scala’s implicits [Oliveira et al. 2010]. Many other programming languages have

mechanisms similar to type classes and implicits [Devriese and Piessens 2011; Sozeau and Oury

2008a; White et al. 2015], and consequently employ a form of resolution. Type classes and implicits

can also be used to define overloaded functions. For example, in Haskell, we may define:

class Over a where f :: a -> a
instance Over Int where f = succ
instance Over Char where f = toUpper

This achieves an overloaded behavior similar to the intersection types version of f. Indeed, the
Haskell version of f can also be applied both to an integer and to a character with similar results.

However, in Haskell, the selection of the right function in the application f 3 uses resolution. In
Haskell (and languages with implicits) there is an implicit environment that stores information about

type class instances. When class methods are used, resolution searches the implicit environment to

find the right instance or to combine existing instances to find a suitable method implementation.

The function f illustrates the similarities and overlapping use cases for subtyping and resolution.

However there are also various use cases that are not in common. On the one hand, with subtyping

we can, for instance, have Int -> Int <: Int -> Top. Such a conversion is typically not

allowed by resolution mechanisms documented in the literature [Hall et al. 1996; Odersky et al.

2017; Oliveira et al. 2012; Schrijvers et al. 2019; Wadler and Blott 1989]. On the other hand, a key

feature of resolution is its ability to compose instances (or implicits). For instance, suppose that we

want an overloaded version of f for lists of integers. With type classes we can define the instance:

instance Over Int => Over [Int] where
f [] = []
f (x : xs) = f x : f xs

Note that here the context Over Int is not necessary in Haskell, but for illustration purposes, we

add the redundant context. With this instance, if we call f [1,2,3], then the result is [2,3,4].
For this to work, resolution needs to find an instance for Over [Int]. While no instance directly

matches the required type, resolution composes the instance for lists with the instance for integers

to build an instance of the appropriate type. The ability to perform such compositions is lacking in

traditional mechanisms with subtyping and intersection types.

This paper shows that, with a small extension, subtyping with intersection types can in fact

subsume forms of resolution. The extension that is necessary to recover the power of resolution

via subtyping is essentially the logical rule for modus ponens:
𝐴 ⊢ 𝐵 → 𝐶 𝐴 ⊢ 𝐵

𝐴 ⊢ 𝐶
Modus Ponens

Modus ponens states that if from𝐴 one can conclude both 𝐵 → 𝐶 and 𝐵 then one can also conclude

𝐶 . The key idea in this paper is that we can adapt modus ponens to subtyping, and thus enable its
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power (and the essential power of resolution). To accomplish this, we simply reinterpret entailment

(𝐴 ⊢ 𝐵) as subtyping (𝐴 <: 𝐵). Modus ponens captures the essence of composition that is necessary

to enable the following derivation:

(Int -> Int) & ((Int -> Int) -> [Int] -> [Int]) <: [Int] -> [Int]

which could be used in a language with intersection types and subtyping, to find an overloaded

implementation of f in a call such as f [1,2,3] (just like the version with type classes).

While modus ponens is easy to add in a declarative version of subtyping, significant care needs to

be taken to retain desirable properties, such as transitivity and decidability of subtyping. Our work

builds and extends upon the NeColus calculus [Bi et al. 2018]—or _+𝑖 —which has both transitivity

and decidability of subtyping, as well as coherence of the elaboration semantics. However, NeColus

does not support modus ponens. Extending the proofs of transitivity, decidability and coherence of

NeColus to support modus ponens is highly non-trivial. The key difficulty is that modus ponens

makes the context in which a type appears relevant for resolution (which is not the case inNeColus).

Adding modus ponens to subtyping, and viewing resolution as a special case of subtyping, comes

with important advantages. Firstly, resolution does not need to be implemented as a completely

separate mechanism. This can make implementations as well as metatheory more compact, because

the two mechanisms are generalized into a single relation. Secondly, the interaction between

resolution and subtyping becomes apparent, which contrasts with the current state-of-the-art where

it is ignored.
1
Indeed, various foundational calculi related to Scala formalize either subtyping [Amin

et al. 2016, 2012] or implicits [Odersky et al. 2017; Oliveira et al. 2012; Schrijvers et al. 2019], but

usually not both. The only exception is the recent work by Jeffery [2019], which studies a calculus

with both features (but where resolution and subtyping are modeled independently). Finally, the

integration of resolution into subtyping enables first-class (implicit) environments. That is, we can
create (implicit) environments (encoded as intersection types), use them as arguments, or return

them from functions. This is impossible in existing approaches for type classes and calculi with

implicits, as there is no explicit notion of a type for environments.

To materialize these ideas we develop _MP
𝑖 : a calculus that extends the NeColus calculus (a

calculus with disjoint intersection types [Oliveira et al. 2016]) and develop its metatheory in the

Coq theorem prover. In summary, the contributions of this work are:

• Resolution as subtyping:We extend subtyping of intersection types with modus ponens.
This enables composing components from intersections to solve subtyping problems, and

(together with other standard intersection rules) subsumes forms of resolution.

• The _MP
𝑖 calculus: We develop a concrete calculus that illustrates the idea of subtyping as

resolution. The calculus is an extension of NeColus [Bi et al. 2018]. We prove several basic

properties, including type-safety, which is proved via an elaboration into the target language

_MP
c , a simply typed lambda calculus extended with coercions.

• Algorithmic subtyping for _MP
𝑖 :We incorporate modus ponens in the NeColus subtyping

algorithm by (1) restructuring it in two mutually recursive judgments—one of which builds

coercions by accumulating them in a continuation-passing form—and (2) adding a loop

detector for termination. Our Coq proofs show that our algorithm subsumes that of NeColus,

and is sound, complete and terminating; this establishes that the subtyping of _MP
𝑖 is decidable.

The proofs of termination and transitivity, which is used to show completeness, are both

highly non-trivial. The former uses different arguments for three different kinds of loops,

including reasoning about the effectiveness of loop detection. The latter consists of 7 mutually

1
For example, GHC issue ticket 17295 is a closely related problem, caused by an unexpected interaction between resolution

and overlapping “intersections”.
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recursive lemmas with complex interdependencies. To establish the well-foundness of their

proof we employ the AProVE tool [Giesl et al. 2017].

• Conditional Coherence for _MP
𝑖 : Establishing coherence of _MP

𝑖 is also a challenging

technical goal. The addition of modus ponens makes it a lot harder due to the ability to

compose information. We formulate a non-trivial extension of the canonicity relation of

NeColus, based on which we build a mechanized partial coherence proof in the Coq theorem

prover.

The supplementary material contains a Coqmechanization of the definitions (4k lines) and theorems

(5.6k lines) in this paper, as well as a prototype implementation in Haskell (~820 lines). It is available

online at https://zenodo.org/record/4043646#.X4gBAHVfhjs.

2 BACKGROUND
This section introduces background on resolution, coercive subtyping, intersection types and their

use in programming languages.

2.1 Coercive Subtyping, Resolution and their Computational Interpretation
This paper brings together two different programming language features: (implicit) resolution as

used in Haskell type classes and Scala implicits on the one hand, and type-directed coercive subtyping
on the other hand. While these two features are very different on the surface, they are in fact both

based on similar computational interpretations of logical inference. The different rules of logical

inference they use are compatible. In this paper we show how to extend this compatibility to the

language design level and how to ensure properties that, while typically of no concern for logical

inference, are key for programming languages, like coherence and decidable type checking.

In the sequent notation, the judgment 𝐴 ⊢ 𝐵 asserts that proposition 𝐵 can be inferred from

proposition𝐴. An inference rule provides a way to construct a valid (or true) judgment. For instance,

the inference rule

𝐴 ⊢ 𝐴
states that the judgment 𝐴 ⊢ 𝐴 (from 𝐴 follows 𝐴) is valid for any proposition 𝐴.

The 𝐴 ⊢ 𝐵 judgment can be given a computational interpretation following the “propositions as

types” approach [Wadler 2015]. This means that we take the types of a programming language as

the possible propositions. The judgment 𝐴 ⊢ 𝐵 then means that there exists a computable function

that turns values of type 𝐴 into values of type 𝐵. We call this function the (computational) evidence

for the judgment. The evidence for a judgment follows from the inference rules that have been

used to establish that judgment. For instance, the evidence for the trivial 𝐴 ⊢ 𝐴 judgment above is

the identity function _𝑥 .𝑥 . A more advanced inference rule is that for transitivity

𝐴 ⊢ 𝐵 𝐵 ⊢ 𝐶
𝐴 ⊢ 𝐶

which allows to conclude 𝐶 from 𝐴 provided that 𝐵 can be concluded from 𝐴 and 𝐶 from 𝐵. Given

evidence 𝑓 for 𝐵 ⊢ 𝐶 and evidence 𝑔 for 𝐴 ⊢ 𝐵, the evidence for 𝐴 ⊢ 𝐶 is _𝑥.𝑔 (𝑓 𝑥).

Coercive Subtyping. A first programming language application of this mechanism is coercive

subtyping [Luo 1999]. In this case we write 𝐴 <: 𝐵 instead of 𝐴 ⊢ 𝐵 and call 𝐴 and 𝐵 subtype and

supertype respectively, rather than premise and conclusion. Also we call the associated evidence of

the judgment a coercion. Unlike other forms of subtyping, coercive subtyping changes the runtime

representation of a value of type 𝐴 when upcasting to type 𝐵. This change is accomplished by

the coercion. Even though the coercion is executed at runtime, it is already statically known at

what point in the program it needs to be performed, namely at the point in the static type system
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object Test {
class P // proposition P
class Q // proposition Q
class U // proposition U

implicit def f(implicit o : P) : Q = new Q() // P -> Q
implicit def g(implicit o : Q) : U = new U() // Q -> U
implicit val p : P = new P() // P

val u : U = implicitly[U] // triggers resolution from
// the implicit environment

}

Fig. 1. Encoding of the judgment 𝑃 → 𝑄,𝑄 → 𝑈 , 𝑃 ⊢ 𝑈 as a Scala program.

where an appeal is made to subtyping. In order to introduce the coercion, coercive subtyping can

therefore make use of a static program transformation approach called (type-directed) elaboration.

Elaboration uses the information of static typing to transform a program with implicit appeals to

subtyping into a program with explicit applications of coercions. For example, consider a function 𝑓

that expects a value of type 𝐵 and a value 𝑣 of type 𝐴 where 𝐴 <: 𝐵. Hence, in the function call 𝑓 𝑣

there is a type mismatch that the type system bridges by appealing to subtyping. Elaboration then

transforms this function call into 𝑓 (𝑐 𝑣) where 𝑐 is the coercion for 𝐴 <: 𝐵. The explicit coercion
application replaces the implicit appeal to subtyping.

Resolution. A rather different application of logic inference in programming languages are

implicits in Scala. In their basic form, they involve an environment of premises that the programmer

can populate and extend with particular types and values of those types as evidence. Functions can

take implicit parameters which the type system fills in by searching values of the appropriate type

in the implicit environment. Elaboration turns those implicit parameters into explicit ones. This

behavior is extended with the modus ponens inference rule, to make it more powerful.

The computational evidence associated to this rule, shown in Section 1, is _𝑥.(𝑓 𝑥) (𝑔 𝑥) where 𝑓
is the evidence for 𝐴 ⊢ 𝐵 → 𝐶 and 𝑔 for 𝐴 ⊢ 𝐵. The modus ponens rule can be applied recursively,

e.g. to establish 𝐵 from 𝐴 by modus ponens via 𝐷 → 𝐵 and 𝐷 , and we call the general reasoning

principle recursive resolution.

Resolution in Scala. As a concrete example of resolution in programming languages, consider the

judgment

𝑃 → 𝑄,𝑄 → 𝑈 , 𝑃 ⊢ 𝑈
In this statement, 𝑃 implies 𝑄 , 𝑄 implies 𝑈 and 𝑃 holds as a fact. Thus, we can conclude that 𝑈

holds by straightforward logical reasoning.

Figure 1 illustrates how to encode the judgment in Scala. In this Scala program, we encode propo-

sitions as classes, and we define a few implicit rules that are added to the "implicit environment" of

Scala. The definition of f encodes 𝑃 → 𝑄 , the definition of g encodes 𝑄 → 𝑈 and the definition of

p encodes that 𝑃 holds. In the definition of the value u, we trigger resolution (via the implicitly
keyword), which essentially searches the implicit environment and attempts to compose the rules

and facts in the implicit environment, to find a value of type U. This value will be given eventually

by the synthesized expression g(f(p)).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 206. Publication date: November 2020.
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Essentially, in logic, resolution can be seen as a mechanism for proof search. In programming

languages, resolution is a mechanism that searches for values of a given type by using the rules and

facts of the implicit environment. It can be viewed as a type-directed form of program synthesis.

The connection to our work is that we interpret the resolution relation as subtyping, and

the conjunction of propositions in the environment as intersections. Thus, the above judgment

corresponds to:

(𝑃 → 𝑄)&(𝑄 → 𝑈 )&𝑃 <: 𝑈

using subtyping and intersection types.

Haskell type classes also employ resolution, but there are several superficial differences to Scala

implicits. The name spaces of implicit values—called type classes—is separate from that of other

types and has global scope. Moreover type classes are used as a mechanism for overloading function

names. Yet, in essence, just like Scala implicits, type classes are based on the modus ponens inference

rule for constructing wanted evidence for types in terms of given evidence of other types. We will

look at type classes in more detail in Section 3.

2.2 Different Interpretations for Intersection Types in the Literature
There are several different interpretations of intersection types in the literature. Intersection types

date back to work from Coppo et al. [1981] and Pottinger [1980] and were first used to characterize

the strongly normalizable terms of the _-calculus.

Following Forsythe [Reynolds 1988], intersection types were used in various other programming

languages, including CDuce [Benzaken et al. 2003] and Object Oriented languages like TypeScript
2
,

Flow [Raskin 1974], Ceylon
3
and Scala [Odersky 2010], enabling multiple inheritance [Pierce 1991].

They were also studied as part of the syntax of several calculi, to enable various forms of polymor-

phism such as finitary function overloading [Castagna et al. 1992], bounded polymorphism [Pierce

1997] and evaluation-order polymorphism [Dunfield 2015]. Refinement types is yet another feature

where intersection types has been studied [Davies and Pfenning 2000; Dunfield 2007; Freeman and

Pfenning 1991]. However, in those systems the type Int & Bool is invalid, since Int and Bool are

not refinements of each other.

Note that intersection types alone only increase the expressive power of types. While languages

with intersection types do not necessarily have a merge operator, the latter adds expressive power to

the terms. This term construct has been used in various, but usually limited, forms like in Forsythe

or in the work of Castagna et al. [1992], discussed in Section 7.

The use of intersection types in this paper follows the interpretation of Dunfield [2012] who has

proposed a particular flavor of intersection types with an unrestricted merge operator, allowing the

construction of values that inhabit intersection types such as Int & Bool. In her work, Dunfield uses

coercive subtyping, based on the inference rules for the logical conjunction operator. In particular,

conjunction elimination is expressed in two rules:

𝐴 ∧ 𝐵 ⊢ 𝐴 𝐴 ∧ 𝐵 ⊢ 𝐵
Here, we write𝐴&𝐵, instead of𝐴∧𝐵, to denote an intersection type. The runtime representation of

values of type 𝐴&𝐵 is a tuple (𝑣,𝑤) where 𝑣 has type 𝐴 and𝑤 has type 𝐵. The coercions associated

with the two inference rules are respectively 𝜋1 and 𝜋2, the projection on respectively the first and

second component of the tuple. Dunfield observes that her formulation of the calculus does not

eliminate ambiguous expressions. However, recent work by Oliveira et al. [2016] remedies this

issue by introducing a notion of disjoint intersection types.

2
https://www.typescriptlang.org/

3
https://ceylon-lang.org/
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Our proposed design fits well with this interpretation, i.e. intersection types as a mechanism to

implicitly provide coercions on pairs. Our source language provides a layer of convenience on top

of an ordinary target language with pairs, by generating various types of coercions involving pairs.

In particular, the modus ponens rule is just one of the possible coercions involving pairs.

3 OVERVIEW
This section gives an overview of our work. We are mainly interested in the type-based overloading
and resolution capability at the core of type classes or implicits. In what follows, we use Haskell

type classes for illustration, but we could have used Scala implicits (or other similar mechanisms)

just as well. We start by establishing the relationship between type-based overloading based on

type classes and/or implicits and disjoint intersection types. Then we explain the key idea of our

work to add modus ponens to the subtyping relation for a calculus with (disjoint) intersection types

to recover resolution. Finally, we discuss several technical challenges that need to be addressed for

this addition to work.

3.1 Type-based Overloading with Type Classes
Type classes in Haskell were initially meant to provide a less ad-hoc mechanism to overloading. In

Section 1 we have already seen a simple example of an overloaded function f defined via a type

class. Overloading with type classes is based on parametric polymorphism [Reynolds 1974]. All

type classes require at least one type argument. This type argument is used to specify the places in

the signatures of overloaded methods where different types can occur. For the type class Over the

method f :: a -> a can be overloaded both on the input type and the output type and those two

types need to be the same for a particular overloading.

Conventionally, type class instances cannot overlap. That is, two instances for a type class must

use distinct types. This property is satisfied by the three instances in Section 1:

instance Over Int where ...
instance Over Char where ...
instance Over Int => Over [Int] where ...

Adding a fourth instance for a type that is distinct from those in the previous instances (i.e. Int, or
Char or [Int]) is allowed. For example, the following Bool instance is allowed:

instance Over Bool where f = not

However adding another instance for integers is not allowed:

instance Over Int where f x = x + 2 -- rejected!

The compiler complains that there is already another instance in scope for Over Int.

Overlapping instances and ambiguity. The restriction of non-overlapping instances is put into

place to ensure that there is no ambiguity in a program. If the second instance for integers were

accepted then the definition:

p = f 1 -- ambiguous: could be 2 or 3

would be ambiguous as it could choose either of the two integer instances.

3.2 The Merge Operator and Disjoint Intersection Types
The merge operator, originally proposed by Reynolds [1988], adds expressive power to intersection

types. In most calculi with intersection types, a type such as Int&Char is not inhabited, since these

two types are disjoint (i.e. have no common values), so their intersection is empty. With the merge

operator, however, it is possible to build values that inhabit such an intersection type. For example:

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 206. Publication date: November 2020.
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v : Int & Char = 1 ,, 'c'

In the definition of v, the merge operator (,,), is used to build a value of type Int&Char from

an integer and a character. In calculi with a merge operator, intersection types are similar to

conventional pair types. The merge operator is used to build values of the intersection types,

similarly to how we build values for pairs. The main difference to pairs and pair types is that while

for pairs the eliminations (i.e. projections such as fst and snd) are explicit, for intersection types

they are implicit and driven by the type system.

Disjointness and ambiguity. The merge operator is powerful, but without any restrictions it is

easy to have ambiguous programs. For instance, consider the following value:

n : Int & Int = 1 ,, 2

If we use n in an expression such as n + 1 there could be two possible results (2 and 3) depending
on what integer gets selected from the merge.

Disjoint intersection types [Oliveira et al. 2016] were proposed to solve ambiguity problems in

calculi with intersection types and a merge operator. The key idea is to introduce a restriction on

merges: a valid merge can only be built from two values with disjoint types. Two types are disjoint

if the only supertypes that they have in common are top-like types [Oliveira et al. 2016]. This

restriction prevents the merged value n from type-checking, while accepting v. Furthermore, for

previous calculi with disjoint intersection types it has been proven that the disjointness restriction

is sufficient to guarantee coherence [Reynolds 1991], a correctness property that rules out any

ambiguity. This property is important for calculi with non-deterministic semantics, where well-

formed expressions can take on multiple meanings, and ensures that these meanings are equivalent,

in the sense that the program which the initial expression models will always behave the same.

3.3 Disjoint Merges, Non-Overlapping Instances and Resolution
Disjointness checks for merges and non-overlap checks for type class instances are closely related.

The non-overlap check for type classes can be viewed as a simple form of disjointness checking. If

we ignore polymorphic types, then the non-overlap check is simply testing whether two types are

distinct
4
, which is subsumed by a disjointness check for merges.

Type class instances as merges. The fact that disjointness checking relates/subsumes to non-

overlapping checking is crucial for expressing code analogous to type class instances as merges.

Consider a variant of f in Section 1:

f : (Int -> Int) & (Char -> Char) & ((Int -> Int) -> [Int] -> [Int])
= succ ,, toUpper ,, listInstance

where listInstance is analogous to the type class instance Over [Int] from Section 1, with the

type ((Int -> Int) -> [Int] -> [Int]). Here, the merge creates an overloaded function and

checks that the three implementations have disjoint types. This is similar to checking whether

Over Int, Over Char and Over [Int] overlap. Therefore, we can essentially express type class

instances through merges, whose components define the methods of the instances for overloading.

Resolution via Modus Ponens. While we can express some type class instances with disjoint

intersection types, an important “class” of instances cannot be expressed because previous work on

disjoint intersection types lacks resolution. That is, in previous work a program such as:

p : [Int] = f [1,2,3]

4
With polymorphism we also need to account for instantiation. For example the type [Int] is not equal to [a], but it does
instantiate [a]. So two instances C [a] and C [Int] (for some type class C) overlap.
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would not type check because [Int] -> [Int], which is the type that f needs to have, is not a
supertype of the type of f. However the addition of modus ponens changes this and [Int] -> [Int]
becomes a supertype of the type of f, thus enabling the above use of f.

3.4 First-Class Environments
Viewing instances/implicits as merges opens up the possibility of new and interesting features for

programming with implicit values and resolution. In particular, unlike type class instances (which

are second class), merges are first-class. In other words, we can pass merged values as arguments

or return them as results. This is not possible with type class instances. An instance declaration is

top-level, but we cannot create instances on the fly.
5

To illustrate the use of first-class environments, consider a program that processes data from a

sensor measuring temperatures. The temperatures are collected at fixed time intervals, and the

sensor may fail to read temperatures (for example due to temperatures being too high, low or to

some unknown error). The sensor data is collected in a text file using a sequence of numbers or

strings (for errors) separated by commas. For instance:

32,-9,"LOW",10,"ERROR"

With Haskell type classes one may be tempted to use the Read type class:

class Read a where
read :: String -> a

to process the String using the existing instances of the Read class:

instance Read Int where ...
instance Read String where ...
instance Read a => Read [a] where ...
instance (Read a, Read b) => Read (Either a b) where ...

The programmer’s hope here would be that we could interpret the type of sensor values as [Either
String Int], and then simply employ resolution to compose the above instances:

read "32,-9,\"LOW\",10,\"ERROR\"" :: [Either String Int]

However this does not work because the input string is not in the correct format to be parsed by

the Read instances. In Haskell the Read instances for types such as Either a b and [a] use the
Haskell syntax

6
. The read method provided by Read [Either String Int] would require the

string:

"[Right 32, Right -9, Left \"LOW\", Right 10, Left \"ERROR\"]"

Because Haskell does not allow more than one instance of a type class for the same type, it is not

possible to use alternative instances for Either a b and [a]. There are various workarounds for
this issue, but none of these is ideal.

A solution using first-class environments. An alternative approach to solve this problem is to

use merges to encode first-class environments for instances of Read. We present such a solution

using the _MP
𝑖 calculus (assuming a few convenience source language features). For the purposes

of illustration and readability we assume the following definition of Read:

type Read a = String -> a

and we also assume built-in types for lists and sum types (i.e. modeling, respectively, Haskell’s

List a and Either a b). Given those, we can model four Haskell instances for Read:

5
Though recent work by Winant and Devriese [2018] aims to rectify this.

6
The Haskell format requires that strings to be read as Either a b values start with a Left or Right substring. For list
values, the string should start and end with opening and closing brackets.
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readInt : Read Int = ...
readString : Read String = ...
readEitherSI : Read String -> Read Int -> Read (Either String Int) = ...
readSensor : Read (Either String Int) -> Read [Either String Int] = ...

Here, readInt and readString behave just like the corresponding Haskell instances, while

readEitherSI and readSensor are custom instances that read values in the sensor format. With

intersection types and the merge operator we can define both the type of environments for instances

that read sensor data, and the environment that collects the above instances:

type SensorEnv = Read Int & Read String
& (Read String -> Read Int -> Read (Either String Int))
& (Read (Either String Int) -> Read [(Either String Int)])

env : SensorEnv = readInt ,, readString ,, readEitherSI ,, readSensor

Finally, the parseSensor function parametrizes over a suitable sensor environment:

parseSensor (read : SensorEnv) (s: String) : [Either String Int] = read s

Calling parseSensor with env can parse strings in the expected format for sensor data. More-

over, an additional advantage of the parseSensor function is that it is decoupled from concrete

implementations of Read. For instance, if later we want to express sensor data using Haskell’s own

format for Read instances, we just have to provide an alternative environment:

haskEnv : SensorEnv = readInt ,, readString ,, readEither ,, readList

where readEither and readList behave just like the Haskell instances for Read (Either a b)
and Read [a]. By calling parseSensor with haskEnv as its first argument, the system will infer

an instance of the same type, but taken from the newly provided environment encoding, haskEnv.
Without themodus ponens rule in subtyping, the same functionalitywould require amore verbose

program, where both the provided environment and the parser function should be parametrized

over the alternative instances for Either String Int and [Either String Int], and where

application of instances should be explicit:

type PSensor = (Read Int -> Read String -> Read (Either String Int)))
-> (Read (Either String Int) -> Read [Either String Int])
-> Read Int & Read String

& Read (Either String Int) & Read [Either String Int]

env' (rEitherSI : Read Int -> Read String -> Read (Either String Int))
(rList : Read (Either String Int) -> Read [Either String Int])

: Read Int & Read String & Read (Either String Int) & Read [Either String Int]
= readInt ,, readString ,, (rEitherSI readInt readString)

,, (rList (rEitherSI readInt readString))

parseSensor' (rEither : Read Int -> Read String -> Read (Either String Int )))
(rList : Read (Either String Int) -> Read [Either String Int])
(readArg : PSensor) (s : String)

: [Either String Int]
= readArg rEither rList s

In summary, modus ponens captures the essence of resolution and brings convenience to pro-

grammers by automatically composing instances. This is also the reason why resolution is heavily

used by Haskell and Scala programmers. In addition, the integration of modus ponens into a system
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with intersection subtyping adds expressive power that is not available in Haskell or Scala. In

contrast to Haskell, implicit environments are first-class. With respect to Scala, viewing resolution

as subtyping makes obvious how the two features interact, which we discuss in more detail next.

3.5 Interaction Between Subtyping and Resolution
In languages like Scala, which supports both subtyping and resolution, we expect that the two

mechanisms interact. For example, here is a simple Scala program that requires both mechanisms:

class A {}
class B extends A {}

implicit val v : B = new B() {}; // adds v to the implicit environment
val u : A = implicitly // resolves to v

This program defines two classes A and B. The value v is marked with an implicit keyword, which
has the effect of adding v to the implicit environment, so that it can be used by resolution later.

In the definition of u, implicitly triggers resolution to search for a value of type A. The search
succeeds and resolves to v which has type B, a subtype of A. Clearly this only works if resolution

accounts for subtyping.

The Scala compiler accepts this program and its implementation of resolution does indeed

account for subtyping. However there is very little work formalizing the (non-trivial) interaction

between resolution and subtyping. Most foundational calculi for Scala formalize subtyping, but

not resolution [Amin et al. 2016, 2012]. Similarly, works that formalize resolution typically do not

account for subtyping [Odersky et al. 2017; Oliveira et al. 2012; Schrijvers et al. 2019].

One advantage of making resolution a part of subtyping is that the interaction between the two

mechanisms then becomes trivial. For instance, the following program:

a : Int = 1
b : Int & Char = a,,'c'
u (env : Int&Char) : Int = env

is roughly analogous to the previous Scala program, except that we use a first-class environment

(the argument env of function u) instead of an implicit environment. In this case resolution triggers

a search for an integer in the body of u, which is successful because Int&Char <: Int. Other more

complex interactions between subtyping and resolution, such as in:

(Int -> Top -> Bool) & Int <: String -> Bool

work as well. In this case the two types in the intersection need to be composed with modus ponens

to obtain Top -> Bool and Top -> Bool <: String -> Bool via subtyping.

3.6 Technical challenges
To formalize our integration of resolution and subtyping, we create the _MP

𝑖 calculus by extending

the NeColus calculus with the modus ponens rule. While the extension is seemingly a small change,

it has far-reaching consequences with respect to the metatheory. Conceptually, this is due to the

fact that modus ponens invalidates much of the reasoning about types in the NeColus metatheory.

In NeColus it is possible to consider the syntactic components of types in isolation. This is no

longer possible in _MP
𝑖 because one component may interact with another through modus ponens.

This affects coherence: theNeColus disjointness constraint is insufficient for _MP
𝑖 and needs to be

tightened. Also the coherence proof requires a considerably more complex canonicity relation that

features a form of context dependency to capture the possible interaction between type components.
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Types A,B ,𝐶 F Nat | ⊤ | A → B | A&B
Terms 𝐸 F x | ⊤ | i | _x . 𝐸 | 𝐸1 𝐸2 | 𝐸1 , , 𝐸2 | 𝐸 : A
Typing Contexts Γ F • | Γ, x : A

Fig. 2. _MP
𝑖

Syntax

Γ ⊢ 𝐸 ⇒ A⇝ e Type Synthesis

⊢ Γ

Γ ⊢ ⊤ ⇒ ⊤⇝ ⟨⟩
T-top

⊢ Γ

Γ ⊢ i ⇒ Nat⇝ i
T-nat

x : A ∈ Γ ⊢ Γ

Γ ⊢ x ⇒ A⇝ x
T-var

Γ ⊢ 𝐸1 ⇒ A1 → A2⇝ e1 Γ ⊢ 𝐸2 ⇐ A1⇝ e2

Γ ⊢ 𝐸1 𝐸2 ⇒ A2⇝ e1 e2
T-app

Γ ⊢ 𝐸 ⇐ A⇝ e

Γ ⊢ 𝐸 : A ⇒ A⇝ e
T-anno

Γ ⊢ 𝐸1 ⇒ A1⇝ e1 Γ ⊢ 𝐸2 ⇒ A2⇝ e2 ⊢𝑑 A1&A2

Γ ⊢ 𝐸1 , , 𝐸2 ⇒ A1&A2⇝ ⟨e1, e2⟩
T-merge

Γ ⊢ 𝐸 ⇐ A⇝ e Type Checking

Γ, x : A ⊢ 𝐸 ⇐ B⇝ e

Γ ⊢ _x . 𝐸 ⇐ A → B⇝ _x : |A|. e
T-abs

Γ ⊢ 𝐸 ⇒ B⇝ e B <: A⇝ c

Γ ⊢ 𝐸 ⇐ A⇝ c e
T-sub

Fig. 3. Bidirectional Typing

Algorithmic subtyping is also affected by this. The algorithm no longer terminates naturally and

requires a loop detector. This makes the termination proof a lot harder. Moreover, the size-based

induction used to prove transitivity for the algorithmic subtyping of NeColus breaks. Instead,

our transitivity proof involves 7 mutually recursive lemmas and relies on the AProVE automatic

termination checker to establish their well-foundedness.

The following sections set up _MP
𝑖 and explain these aspects in detail.

4 THE _MP
𝑖 CALCULUS

Syntax. Figure 2 shows the syntax of _MP
𝑖 . It is the same as that of NeColus, but—for the sake of

conciseness—without records. Types A,B ,𝐶 include naturals Nat, the top type ⊤, function types

A → B and intersection typesA&B . Terms 𝐸 include variables x , natural numbers i , the top value
⊤, function abstractions _x . 𝐸, function applications 𝐸1 𝐸2, merges 𝐸1 , , 𝐸2 and (type-)annotated

terms 𝐸 : A.

Bidirectional Typing. The type system of _MP
𝑖 , shown in Figure 3, is bidirectional and thus

has two modes: the synthesis mode (⇒) and the checking mode (⇐). The synthesis judgment

Γ ⊢ 𝐸 ⇒ A⇝ e means that we can synthesize type A from expression 𝐸 in context Γ, while the
checking judgment Γ ⊢ 𝐸 ⇐ A⇝ e checks whether 𝐸 has given typeA. As usual, type annotations

switch from synthesis to checking mode (rule T-anno). We reserve further discussion over the parts

highlighted in gray for Section 4.2.

The rules are identical to those of NeColus with one notable difference. Rule T-merge not only

requires the types A1 and A2 of the two subterms to be disjoint, A1 ∗A2, but also requires them

to be internally disjoint, ⊢𝑑 A1 and ⊢𝑑 A2, all summarised in the internal disjointness premise

⊢𝑑 A1 &A2 of the rule. The two disjointness conditions are discussed in Section 4.4.
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A <: B⇝ c Subtyping

S-refl

A <: A⇝ id|A|

A1 <: A2⇝ c1 A2 <: A3⇝ c2

A1 <: A3⇝ c2 ◦ c1
S-trans

S-top

A <: ⊤⇝ top|A|

B1 <: A1⇝ c1 A2 <: B2⇝ c2

A1 → A2 <: B1 → B2⇝ c1 → c2
S-arr

S-topArr

⊤ <: ⊤ → ⊤⇝ top→

A <: B1⇝ c1 A <: B2⇝ c2

A <: B1&B2⇝ ⟨c1, c2⟩
S-and

S-andl

A&B <: A⇝ 𝜋
|A|,|B |
1

S-andr

A&B <: B⇝ 𝜋
|A|,|B |
2

(A → B1)& (A → B2) <: A → B1&B2⇝ dist|A|,|B1 |,|B2 |
→

S-distArr

A <: B1⇝ c1 A <: B1 → B2⇝ c2

A <: B2⇝ c2 c1
S-mp

Fig. 4. Declarative Specification of Subtyping

The judgment ⊢ Γ used in the premise of rules T-top, T-nat and T-var expresses that the typing

context Γ is well-formed, i.e. it holds no duplicate variables. Its definition can be found in Appendix B.

4.1 Declarative Subtyping
Figure 4 declaratively specifies the subtyping relation of _MP

𝑖 . The judgment A <: B⇝ c states

that A is a subtype of B and produces coercion c. Intuitively, c captures the way to convert values

of type A into values of type B .

BCD-Style Subtyping. All but the last subtyping rule are the same as those of NeColus and

originate from the BCD type system [Barendregt et al. 1983]. Rules S-refl, S-trans and S-top ensure

that subtyping is a partial order with⊤ as greatest element. Rule S-arr is the standard subtyping rule

for function types, while rules S-andl, S-andr and S-and are standard for intersection types. Rules

S-distArr and S-topArr are standard BCD subtyping rules; the former enables nested composition [Bi
et al. 2018], while the latter provides a more unified treatment of top-like types in the meta-theory

of the language: without that rule, we cannot have A → B <: ⊤ → ⊤, if A is not top-like itself.

Modus Ponens. Our calculus extends the subtyping relation of NeColus with one new rule, S-mp,

which corresponds to the Modus Ponens inference rule of propositional logic. It states that if A
is a subtype of both B1 → B2 and of B1, then it is also a subtype of B2. While this extension

of subtyping is conceptually small, it has far-reaching consequences for the meta-theory of the

language.

4.2 Elaboration Semantics
Following NeColus we assign a semantics to _MP

𝑖 by means of an elaboration. The target of the

elaboration is _MP
c , which is the simply typed lambda-calculus extendedwith products and coercions.

Pairs are the elaboration target of merges (rule T-merge), while coercions explicitly witness the

implicit use of subtyping in _MP
𝑖 (rule T-sub).
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Types 𝜏 F Nat | ⟨⟩ | 𝜏1 → 𝜏2 | 𝜏1 × 𝜏2
Terms e F x | ⟨⟩ | i | _x : 𝜏 . e | e1 e2 | ⟨e1, e2⟩ | c e
Coercions c F id𝜏 | c1 ◦ c2 | top𝜏 | c1 → c2 | 𝜋𝜏1,𝜏2

1 | 𝜋𝜏1,𝜏2
2 | ⟨c1, c2⟩ | top→ | dist𝜏1,𝜏2,𝜏3→ |

c1 c2
Typing contexts Δ F • | Δ, x : 𝜏
Values v F ⟨⟩ | i | _x : 𝜏 . e | ⟨v1, v2⟩ | (c1 → c2) v | top→ v | (dist𝜏1,𝜏2,𝜏3→ ) v

Fig. 5. _MP
c Syntax

c ⊢ 𝜏1 ⊲ 𝜏2 Coercion Typing

c1 ⊢ 𝜏1 ⊲ 𝜏2 c2 ⊢ 𝜏1 ⊲ (𝜏2 → 𝜏3)
c2 c1 ⊢ 𝜏1 ⊲ 𝜏3

CT-mp

e1 −→ e2 Small-Step Operational Semantics

(c2 c1) v −→ (c2 v ) (c1 v )
step-mp

Fig. 6. _MP
c Coercion Typing and Operational Semantics (new rules)

The _MP
c Calculus. Figure 5 shows the syntax of _MP

c . This syntax is nearly identical to that of

NeColus’ target language. There are only two differences, both situated in the coercions c. These
coercions express the conversion of a term from one type to another. The reason why we use

a separate syntactic sort of coercions for this—rather than encoding the conversions as regular

function terms—is that it facilitates the coherence proof. Each coercion form corresponds to a

particular subtyping rule (Figure 4). The first and main difference to NeColus’ target calculus is that,

because we have a new modus ponens subtyping rule in _MP
𝑖 , there is also a new corresponding

coercion form c1 c2 in _MP
c to witness it. The second and minor difference is that we have

annotated several existing coercion forms with type information in order to facilitate type checking.

Figure 6 lists the new inference rules in the type system and small-step operational semantics

of _MP
c to support the new coercion form. The full definitions of these relations can be found

in Appendix A. The coercion typing rule CT-mp essentially replicates the subtyping rule S-mp of

Figure 4, but now with _MP
c types. The new small-step rule, step-mp, splits up an application of a

modus ponens coercion c2 c1 to value v into separate coercion applications c2 v and c1 v where

the former should yield a function that is applied to the latter.

How the features of _MP
𝑖 are mapped to _MP

c is given in the grey parts of Figures 4 and 3. In

those figures the meta-function | · | transforms _MP
𝑖 types to _MP

c types, and extends naturally to

typing contexts. Its definition is in Appendix B.

4.3 Target and Elaboration Metatheory
We have formally investigated the metatheory of our calculus, _MP

𝑖 , and of its target language, _MP
c ,

and mechanised it in Coq.

Target Language. Firstly, we have proven that the key metatheoretical properties of _MP
c are not

invalidated by the new coercion form. Indeed, _MP
c is type safe:

Theorem 4.1 (Preservation). If • ⊢ e : 𝜏 and e −→ e ′, then • ⊢ e ′ : 𝜏 .
Theorem 4.2 (Progress). If • ⊢ e : 𝜏 , then either e is a value or there is an e ′ such that e −→ e ′.

Moreover, every well-typed _MP
c term is normalising.

Theorem 4.3 (Normalisation). If • ⊢ e : 𝜏 then there exists a value v such that e −→∗ v .

Here −→∗
, is the reflexive transitive closure of −→.
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A ∗ B Disjointness

⊤ ∗A
D-topL

A ∗ ⊤
D-topR

A1 ∗ B A2 ∗ B
A1&A2 ∗ B

D-andL

A ∗ B1 A ∗ B2

A ∗ B1&B2
D-andR

A2 ∗ B
(A1 → A2) ∗ B

D-mpL

A ∗ B2

A ∗ (B1 → B2)
D-mpR

⊢𝑑 A Internal Disjointness

⊢𝑑 Nat
ID-nat

⊢𝑑 ⊤
ID-top

⊢𝑑 B

⊢𝑑 A → B
ID-arr

A ∗ B ⊢𝑑 A ⊢𝑑 B

⊢𝑑 A&B
ID-and

Fig. 7. Disjointness conditions

Elaboration. Also, the elaboration of _MP
𝑖 to _MP

c preserves well-typing.

Theorem 4.4 (Coercions Preserve Types). If A <: B⇝ c, then c ⊢ |A| ⊲ |B |.

Theorem 4.5 (Elaboration Preserves Types).

• If Γ ⊢ 𝐸 ⇒ A⇝ e , then |Γ | ⊢ e : |A|.
• If Γ ⊢ 𝐸 ⇐ A⇝ e , then |Γ | ⊢ e : |A|.

The meta-function |Γ | translates a source typing context Γ to a target one. The full definition

can be found in Appendix B.

4.4 Disjointness Conditions
Figure 7 shows the rules for disjointness (top) and internal disjointness (bottom).

Disjointness. The purpose of the disjointness condition is to avoid ambiguous expressions like

1, , 2. Judgment A ∗ B conservatively captures the notion that the common supertypes of A and B
are all top-like. The first 4 rules of Figure 7, for the top type and intersection types, are the same as

those of NeColus. We turn our focus to the new rules D-mpL and D-mpR, added to accommodate the

new modus ponens subtyping rule. While they can be combined to recover NeColus’ D-arr rule
7
,

B1 ∗ B2

(A1 → B1) ∗ (A2 → B2)
D-arr

they cannot be used to recover the NeColus axioms Nat ∗ (A → B ) and (A → B ) ∗ Nat. On
the contrary, _MP

𝑖 does not consider the types Nat and Bool → Nat to be disjoint. For the sake

of conciseness and compositionality, the disjointness definition is conservative. Indeed, merging

any expressions of those two types does not lead to ambiguity. Yet, if we merge two expressions

whose types contain the above two types, ambiguity can in fact arise. Consider the example

((true , , (_x . 1) : Bool → Nat) , , 2) : Nat. The elaborated form of the merge expression on the

left of the outer type annotation is the tuple ⟨⟨true, _x : Bool. 1⟩, 2⟩. The outer type annotation
will trigger the subtyping mechanism, first via rule T-anno and then through rule T-sub, in order

to produce a value of type Nat. This example is ambiguous, because it can produce—through

subtyping—two different values of this type: 2 by projecting on the right component of the outer

tuple, and 1 by projecting on the left component of the outer tuple and using modus ponens to

apply (_x : Bool. 1) to true. The respective subtyping derivations and the coercions they generate

are shown in Figure 8. For similar reasons, expressions (_x . 1) : Bool → Nat , , (2 , , true) and
7
This rule states that two arrow types are disjoint if their codomains are disjoint.
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Example (a)

(B& (B → N))&N <: N⇝ 𝜋
B×(B→N),N
2

S-andr

Example (b)

(B& (B → N))&N <: B& (B → N)⇝ 𝜋
B×(B→N),N
1

B& (B → N) <: B⇝ 𝜋
B,B→N
1

B& (B → N) <: B → N⇝ 𝜋
B,B→N
2

B& (B → N) <: N⇝ 𝜋
B,B→N
2 𝜋

B,B→N
1

S-mp

(B& (B → N))&N <: N⇝ (𝜋B,B→N
2 𝜋

B,B→N
1 ) ◦ 𝜋B×(B→N),N

1

S-trans

Fig. 8. Example subtyping derivations. Types Bool and Nat are abbreviated here as B and N, respectively.

(2 , , (_x . 1) : Bool → Nat) , , true are also ambiguous. In all three cases, the component types of a

merge will not be disjoint.

The two new rules D-mpL and D-mpR bring the notion of disjointness between two types closer to

the notion of no-overlaps between two (or more) instances. Types B and A → B are not disjoint,

similarly to how two Haskell instances C Int and D Int => C Int overlap.

Harmless overlaps and (non-)ambiguity. Note that not all forms of overlap introduce semantic

ambiguity. In particular, we identify two such harmless cases. Firstly, in the presence of an overlap,

it can still be the case that there is only one way to resolve a value of a given (overlapping) type.

For example, in the term 2 , , (_x . 1) : Bool → Nat of type Nat& (Bool → Nat), the types Nat and
Bool → Nat overlap, but there is only one applicable way to resolve a value of type Nat, because
there is no Bool value to feed to the function (_x . 1) : Bool → Nat. Secondly, expressions of an
overlapping type are harmless when all possible resolution paths for a wanted type result in the

same inferred value. For example, the term (1 , , 1), while containing an overlap, is unambiguous.

Because of the disjointness condition imposed over merges, the source calculus conservatively

rejects expressions that fall under either of the two harmless forms of overlap, when they are

explicitly written by the programmer. However, they are still possible implicitly, through a type

annotation, which invokes subtyping. For example, we can encode the rejected term (1 , , 1) as
1 : Nat&Nat, which is accepted and semantically same. Its full typing derivation is in Appendix E.

Internal Disjointness. The internal disjointness predicate, ⊢𝑑 A, requires that the two components

of any intersection type that appear in A are disjoint. Intuitively, ⊢𝑑 A ensures that if A <: B , then

B can only contain harmless overlaps.

The internal disointness condition is imposed on the subterms of a merge in rule T-merge. Again

this is a conservative measure to avoid ambiguity, this time of a more convoluted nature that

involves nested merges interleaved with subtyping. Here is a minimal ambiguous example to

illustrate the problem:

((true , , b2n) : Nat& (Bool → Nat) , , false) : Nat
This example features b2n, which we assume to be a built-in function of type Bool → Nat that
maps true to 1 and false to 0. The inner merge has type Bool& (Bool → Nat), but is converted
to type Nat& (Bool → Nat) by means of the type annotation, which triggers the subtyping

mechanism. The latter produces a coercion that is then applied on (the elaborated form of) the

subterm true , , b2n. The corresponding value is 1 , , b2n, which could not be written explicitly

because Nat and Bool → Nat are not considered disjoint. Yet, because this value is not explicitly

written by the programmer, but implicitly produced through subtyping, we know that the overlap

is harmless. Indeed, while the expression 1 , , b2n potentially produces two different values of type

Nat, one of those requires a Bool, which is not available at this point.
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However, the outer merge with false provides the missing Bool value, making the outer Nat type
annotation ambiguously yield both 0 and 1 as possible results. The disjointness check rejects none

of the two merges in the example. Here, the internal disjointness constraint comes in. It catches

the ambiguity problem at the outer merge where it identifies 1 , , b2n as unfit to merge with.

Internal disjointness inherits the conservative behavior of the (binary) disjointness condition, as

witnessed in rule ID-arr. This rule regards the case of a function type A → B that potentially is a

supertype of some internally disjoint type, say A′
(formally, A′ <: A → B ). If A′

is not a subtype

of A (thus, A′ <: A does not hold), then rule S-mp does not apply. In fact, it becomes impossible to

implicitly produce B from A′
and, therefore, unnecessary to demand internal disjointness of B .

The indifference of rule ID-arr around domains of arrow types is justified by the intuition that if

a supertype of an internally disjoint type contains overlaps, then those are harmless. A function

of type A → B is unambiguous if it outputs unambiguous values of type B , given unambiguous

input values of type A. This implies the requirement that A is also internally disjoint. However,

at this point, only values produced implicitly from A′
are considered, and these can only contain

harmless ambiguity. Indeed, explicit values can be added only through the merge operator, thus

falling under rule ID-and. Thus, unambiguity is ensured for A.

5 ALGORITHMIC SUBTYPING
In this section, we present an algorithm that decides the subtyping relation of Figure 4.

In the declarative specification of the subtyping relation (Figure 4), rules S-trans and S-mp hinder

the decidability of subtyping: they both require guessing an appropriate intermediate type (A2 in

the former, and B1 in the latter). We address this by employing a technique originating from proof

search known as focusing [Andreoli 1992]. The general strategy for checking a constraint of the form
A <: B is to structurally analyze (focus on) B , and when it is stripped down to a base type do the

same for A. This task is performed by two mutually-recursive judgments, the first focusing on the

right type B , and the second focusing on the left typeA. This technique has already been employed

by Bi et al. [2018]—and, before that, by Pierce [1989]—though with a single all-in-one judgment.

Our algorithm separates the two phases for clarity (and ease of reasoning) and also deals with the

additional complexity introduced by rule S-mp. Unfortunately, the support for modus ponens greatly

complicates the algorithm’s proofs of transitivity and termination. For the former, we had to come

up with an approach external to Coq, involving the AProVE termination checker [Giesl et al. 2017],

to establish well-foundedness. In the remainder of the section we describe the subtyping algorithm

in detail (Section 5.1), as well as its most important meta-theoretical properties (Section 5.2). We

follow the earlier convention to highlight the parts of the rules that concern coercion generation.

5.1 The Subtyping Algorithm
In Figure 9, we present the algorithmic subtyping judgment A ≺: B⇝ c; the algorithmic coun-

terpart of the declarative judgment A <: B⇝ c of Section 4.1. The main judgment is defined in

terms of two auxiliary, mutually-recursive judgments L ⊢R A ≺: B⇝ c and L;M;A0; X ⊢L 𝐴 ≺:
𝐵⇝ X′

, each focusing on the right or the left component of a type inequality, respectively. We

explain the former in Section 5.1.1 and the latter in Section 5.1.2.

Preliminaries. Meta-variables L and M stand for queues of types. The algorithm uses them to

capture the left-hand sides of arrow types. Operation L →→ B converts a queue L back into a type,

given the right-hand side type B . It is inductively defined as follows:

[] →→ B = B (A,L) →→ B = A → (L →→ B )
Meta-variable X denotes algorithmic contexts. An algorithmic context is merely the Cayley repre-

sentation of a coercion: a function from coercions to coercions. Given a coercion c, we can convert
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𝐴 ≺: 𝐵⇝ 𝑐 Algorithmic Subtyping

[] ⊢R A ≺: B⇝ c

A ≺: B⇝ c
A-main

L ⊢R A ≺: B⇝ c Right Focusing

L ⊢R 𝐴 ≺: B1⇝ c1 L ⊢R 𝐴 ≺: B2⇝ c2

L ⊢R 𝐴 ≺: B1&B2⇝ JLKB1,B2

&
◦ ⟨c1, c2⟩

AR-and

L,B1 ⊢R 𝐴 ≺: B2⇝ 𝑐

L ⊢R 𝐴 ≺: B1 → B2⇝ 𝑐
AR-arr

L ⊢R 𝐴 ≺: ⊤⇝ JLK⊤ ◦ top|A|
AR-top

L; [];𝐴; (_𝑐.𝑐) ⊢L 𝐴 ≺: Nat⇝ X
L ⊢R 𝐴 ≺: Nat⇝ X[id|Nat| ]

AR-nat

L;M;A0; X ⊢L 𝐴 ≺: 𝐵⇝ X′
Left Focusing

AL-nat

[];M;A0; X ⊢L Nat ≺: Nat⇝ X
L;M;A0; (_𝑐.X[c ◦ 𝜋 |A1 |,|A2 |

1 ]) ⊢L A1 ≺: Nat⇝ X′

L;M;A0; X ⊢L A1&A2 ≺: Nat⇝ X′ AL-and1

L;M;A0; (_𝑐.X[c ◦ 𝜋 |A1 |,|A2 |
2 ]) ⊢L A2 ≺: Nat⇝ X′

L;M;A0; X ⊢L A1&A2 ≺: Nat⇝ X′ AL-and2

[] ⊢R B1 ≺: A1⇝ 𝑐1 L;M,B1;A0; (_𝑐.X[𝑐1 → 𝑐]) ⊢L A2 ≺: Nat⇝ X′

B1,L;M;A0; X ⊢L A1 → A2 ≺: Nat⇝ X′ AL-arr

[] ⊢R A0 ≺: (M →→ A1)⇝ c2 L;M;A0; X′ ⊢L A2 ≺: Nat⇝ X′′

X′ = (_𝑐.JMK(c◦(𝜋
| (A1→A2 ) |,|A1 |
1 𝜋

| (A1→A2 ) |,|A1 |
2 )),(A1→A2),A1

&
◦ ⟨X[id|A1→A2 | ], c2⟩)

L;M;A0; X ⊢L A1 → A2 ≺: Nat⇝ X′′ AL-mp

Fig. 9. Algorithmic Subtyping

an algorithmic context X into a coercion by function application, denoted as X[c]. The role of
algorithmic contexts is explained in Section 5.1.2 where we discuss the left-focusing rules.

8

5.1.1 Right Focusing. As mentioned earlier, the first judgment (L ⊢R A ≺: B⇝ c) structurally
analyzes B , until it is stripped down to a base type (Nat or ⊤). The accumulating parameter L
captures the domains of arrows encountered in B , such that the following holds:

Lemma 5.1 (Soundness of Right Focusing). If L ⊢R A ≺: B⇝ c then A <: (L →→ B )⇝ c.

The first judgment is mostly borrowed from NeColus; we explain it only briefly here.

Subtyping. Ignoring coercion generation for now, the judgment works as follows: Rule AR-and

decomposes an intersection type, similar to its declarative counterpart (rule S-and). Rule AR-arr

deals with arrow types: the left sides of arrow types are inserted in the rear of type queue L
and removed again later, left-to-right, as arrows are encountered in A (see rule AL-arr below).

There are two base cases: either B = ⊤ or B = Nat. Rule AR-top handles the first case, where

8
In both our mechanization and implementation of the algorithm we use a defunctionalized [Reynolds 1972] representation

of algorithmic contexts, which we then interpret as actual functions between coercions.
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AR-nat =⇒ L0;M0;A0;X0 ⊢𝐿 A0 ≺: Nat ⇝ X𝑛 (M0 = [],X0 = □)
↓ ↑

L1;M1;A0;X1 ⊢𝐿 A1 ≺: Nat ⇝ X𝑛

↓ ↑
· · · · · ·
↓ ↑

AL-nat =⇒ L𝑛;M𝑛;A0;X𝑛 ⊢𝐿 A𝑛 ≺: Nat ⇝ X𝑛 (A𝑛 = Nat,L𝑛 = [])

Fig. 10. Visual Representation of the Execution of (L;M;A0; X ⊢L 𝐴 ≺: 𝐵⇝ X′
)

subtyping directly produces a coercion with the use of the meta-function JLK⊤, discussed in

the next paragraph. If B = Nat, then we perform structural analysis on A, using judgment

L;M;A0; X ⊢L A ≺: B⇝ X′
, which we elaborate on in Section 5.1.2.

Coercion Generation. The elaboration side is a bit more involved. Coercion generation can be

understood via Lemma 5.1 and works as follows. Rule AR-and deals with intersection types. By

induction we have that

A <: (L →→ B1)⇝ c1
A <: (L →→ B2)⇝ c2

}
=⇒ A <: (L →→ B1)& (L →→ B2)⇝ ⟨c1, c2⟩

We finish the transition to L →→ (B1 &B2) using meta-function JLKB1,B2

&
, whose meaning is given

by the following lemma:
9

Lemma 5.2. ∀L,B1,B2, (L →→ B1)& (L →→ B2) <: L →→ (B1 &B2)⇝ JLKB1,B2

&
.

Rule AR-top deals with the same problem that rule AR-and does: according to Lemma 5.1, the

coercion needs to witnessA <: (L →→ ⊤), and not simplyA <: ⊤. As (L →→ ⊤) is top-like [Alpuim
et al. 2017] we can always cast ⊤ to it, which is what JLK⊤ witnesses:

9

Lemma 5.3. ∀L,⊤ <: (L →→ ⊤)⇝ JLK⊤.

Rule AR-arr is straightforward. Finally, rule AR-nat handles the base case where B is Nat. In this

case we resort to the auxiliary judgment L;M;A0; X ⊢L 𝐴 ≺: 𝐵⇝ X′
, which we discuss next.

5.1.2 Left Focusing. The intuition behind L;M;A0; X ⊢L 𝐴 ≺: 𝐵⇝ X′
is that the (input) algo-

rithmic context X witnesses the transition from A0 to (M →→ A), the component of A0 that we

are currently focusing on. The (output) algorithmic context X′
is meant to capture the complete

transition from A0 to (M →→ (L →→ B )). Essentially, starting with rule AR-nat as the entry point,

the judgment continuously decomposes A (via rules AL-and1, AL-and2, AL-arr, and AL-mp) until it

equals B (rule AL-nat); then the accumulated context X witnesses the complete transition from

A0 to (M →→ (L →→ B )) and the job is done. Figure 10 visualizes this process.

Subtyping. Ignoring coercion generation, the judgment works as follows: Rule AL-nat constitutes

the base case where subtyping holds trivially. Rules AL-and1 and AL-and2 non-deterministically

focus on the left or the right component of an intersection, similarly to their declarative counterparts

(rules S-andl and S-andr, respectively). Rule AL-arr is the algorithmic version of rule S-arr: we

dequeue B1 from L in a first-in-first-out manner, in order to match the order in which arrows are

encountered in A. After we prove subtyping for the domains of the functions, we record that we

are going under a binder of type B1 in the queue M and proceed recursively with the function

images. QueueM thus captures all the arrow domains in B that have been removed in lockstep

9
Its definition is straightforward and thus omitted; it can be found in Appendix D.
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with arrow domains in A using rule S-arr.
10
This context becomes useful when we need to use

Modus Ponens under a binder, e.g. to prove

Nat → (Bool& (Bool → String)) <: Nat → String

(or even ⊤ → (Bool& (Bool → String)) <: Nat → String). Lastly, rule AL-mp is the algorithmic

version of the S-mp rule. The first premise reveals the synergistic relationship between this rule

and rule AL-arr: when we need to synthesize an argument for Modus Ponens, we restart from

the original type A0—thus capturing the complete implicit context of A1 → A2—and use the

contextualized version of A1, (M →→ A1). For the above example, this amounts to proving

Nat → (Bool& (Bool → String)) <: Nat → Bool

The second premise is straightforward.

Note that rules AL-arr and AL-mp overlap and, to ensure completeness with respect to the

declarative specification of subtyping, backtracking is required. However, it is never the case that

both rules can apply for resolving a subtyping judgment. That is, backtracking will always fail in at

least one of the two choices.

Coercion Generation. The elaboration side, again, requires a bit more explanation. The complica-

tion arises in rule AL-mp, where the first premise restarts from the original type A0. This is essential

for recovering the unfocused context needed for Modus Ponens, but it goes against the inductive,

top-down approach to coercion generation that we follow in the right-focusing rules. Coercions

produced by the recursive calls can no longer be directly combined. This is why the left focusing

rules use algorithmic contexts instead of coercions. The essence of the algorithmic contexts is

captured in the following invariant, which is preserved by each step of the left focusing algorithm:

Invariant 1. ∀c A′,A𝑖 <: A
′⇝ c =⇒ A0 <: (M𝑖 →→ A′)⇝ X𝑖 [𝑐]

Metavariables A𝑖 , A0, M𝑖 , and X𝑖 refer to the corresponding parameters at the 𝑖-th step in

Figure 10. Informally, X captures the transition from A0 to A𝑖 : X𝑖 [𝑐] witnesses the complete

transition from A0 to any type A′
, if we have a way to perform the remaining transition from A𝑖

to A′
. Hence, every rule of the judgment strips a layer off A and extends the “input” algorithmic

context accordingly, so that Invariant 1 is preserved.

Rule AL-mp is by far the most interesting rule. It commits to using the S-mp rule: the left premise

produces a coercion c2 that provides the argument (of type M →→ A1), while the appropriate

instantiation of the current context X gives us the function (of typeM →→ (A1 → A2)):
A0 <: M →→ A1⇝ c2
A0 <: M →→ (A1 → A2)⇝ X[id|A1→A2 | ]

Yet, the above coercions cannot be directly combined, due to the type queueM. We remedy this

using meta-function JMKc,B1,B2

&
, whose meaning is given by the following lemma:

11

Lemma 5.4. ∀L B1 B2 B c,B1&B2 <: B⇝ c =⇒ (L →→ B1)& (L →→ B2) <: L →→ B⇝ JLKc,B1,B2

&
.

The general idea is that if (A0 <: M →→ A1⇝ c2) and (A0 <: M →→ (A1 → A2)⇝ c1) then

A0 <: M →→ A2⇝ (_𝑐.JMK(c◦(𝜋
| (A→B ) |,|A|
1 𝜋

| (A→B ) |,|A|
2 )),(A→B),A

&
◦ ⟨c1, c2⟩) [id|A2 | ]

Returning to rule AL-mp, the second premise uses the above algorithmic context (named X′
for

convenience) to further focus on A2.

10
In Figure 10, it is easy to see that M𝑖 ++ L𝑖 = L0, where ++ denotes list concatenation. At the end, we have M𝑛 = L0.

11
Its definition is straightforward and thus omitted; it can be found in Appendix D.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 206. Publication date: November 2020.



Resolution as Intersection Subtyping via Modus Ponens 206:21

5.2 Algorithm Metatheory
Subsumption of NeColus’ Algorithmic Subtyping. First, we have proven that the subtyping algo-

rithm of Figure 9 subsumes the subtyping algorithm of NeColus [Bi et al. 2018, Fig. 12]:

Theorem 5.5 (Subsumption of NeColus’ Algorithm). If [] ⊢ A ≪ B⇝ c then A ≺: B⇝ c.

where L ⊢ A ≪ B⇝ c denotes the subtyping algorithm of NeColus.

Transivity and Modus Ponens. A major difference between algorithmic and declarative subtyping

is that the latter has an explicit transitivity rule while the former does not. Hence, transitivity of

algorithmic subtyping requires a separate proof. Unfortunately, this proof is considerably more

involved than in NeColus. Instead of one inductive core lemma, it consists of 7 mutually recursive

lemmas. The well-foundedness of the induction used in the proofs of those 7 lemmas is no longer

a straightforward size-based induction that can be easily understood by Coq. To overcome this

problem we have used a new approach, external to Coq, to establish well-foundedness. We have

encoded the proof—which is essentially an algorithm that transforms derivation trees—as a term

rewriting system. Then we have used the AProVE tool [Giesl et al. 2017] to verify its termination

automatically. AProVE reports success after 40 steps of transformation, decomposition and basic

termination arguments.

Theorem 5.6 (Transitivity of Algorithmic Subtyping). If A1 ≺: A2⇝ c1 and A2 ≺:
A3⇝ c2, then A1 ≺: A3⇝ c3 for some c3.

The modus ponens property for algorithmic subtyping is closely tied to transitivity proof and is

another consequence of the 7 mutually recursive lemmas.

Corollary 5.7 (Modus Ponens of Algorithmic Subtyping). If A ≺: B1 → B2⇝ c1 and
A ≺: B1⇝ c2, then A ≺: B2⇝ c3 for some c3.

Soundness and Completeness. We have proven that the subtyping algorithm (Figure 9) is sound

and complete with respect to its declarative specification (Figure 4). The soundness of the overall

algorithm is a direct corollary of the soundness of right focusing (Lemma 5.1):

Theorem 5.8 (Soundness). If A ≺: B⇝ c then A <: B⇝ c.

The completeness proof largely follows the same strategy as for NeColus. The main challenge was

the new transitivity proof discussed above.

Theorem 5.9 (Completeness). If A <: B⇝ c then there exists c ′ such that A ≺: B⇝ c ′.

Termination. The final key property of the algorithm is termination. Actually, the algorithm

presented in Figure 9 is not terminating. Consider for example the trace of Nat → Nat ≺: Nat:

( [] ⊢R Nat → Nat ≺: Nat) AR-nat−−−−−−−→ ([]; [];Nat → Nat ⊢L Nat → Nat ≺: Nat) AL-mp−−−−−−→
([] ⊢R Nat → Nat ≺: Nat) AR-nat−−−−−−−→ ([]; [];Nat → Nat ⊢L Nat → Nat ≺: Nat) AL-mp−−−−−−→ . . .

Such a subtyping judgment can result from an erroneous type annotation by the user. Nonetheless,

the language does not statically detect annotations that may cause non-termination in the subtyping

algorithm. Another example, perhaps more plausible as a programming error, is an annotation that

leads to the judgment (Nat → Bool)& (Bool → Nat) ≺: Nat. One simple ingredient needs to be

added to the algorithm to make it terminating: a loop detection on the [] ⊢R 𝐴 ≺: 𝐵 call in rule

AL-mp. This loop detection should reject any calls that repeat one of their ancestor calls.

We can show that (1) any infinite derivation involves an infinite number of these nested calls

and that (2) detecting repeated calls is effective at stopping the non-termination.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 206. Publication date: November 2020.



206:22 Koar Marntirosian, Tom Schrijvers, Bruno C. d. S. Oliveira, and Georgios Karachalias

A priori there are multiple possible ways in which the algorithm can diverge. It might involve

an infinite sequence of recursive calls within one of the two judgments. However, following the

focusing approach, the two judgments structurally decompose their focal argument. Hence, on

their own they are clearly terminating. Any divergence must thus involve an infinite number of

mutually recursive calls between the two judgments. There are two “gatekeepers” of the mutual

recursion, calling back from the left-focusing into the right-focusing judgment. These two are

the problematic one in rule AL-mp and the one in rule AL-arr. Yet, we can show that an infinite

number of recursion steps through rule AL-Arr is impossible and thus we can eliminate it from

consideration. Indeed, the left-arrow depth | | · | | defined below decreases strictly in every AL-arr

loop step, and non-strictly in every other step. Moreover, a value of 0 inhibits rule AL-arr. Thus,

after a finite number of AL-arr steps, the rule can no longer be used.

| |Nat| | = 0 | |A → B | | = max ( | |𝐴| | + 1, | |𝐵 | |)
| |⊤| | = 0 | |A&B | | = max ( | |𝐴| |, | |𝐵 | |)

| | [] ⊢R 𝐴 ≺: 𝐵 | | = max ( | |𝐴| |, | |𝐵 | |)
That leaves only the problematic mutually recursive call in rule AL-mp, which we have already

demonstrated to be a source of non-termination. Fortunately, we can show that the number of

distinct nested calls is finite. Hence, on any infinite derivation path, a repeated call has to occur

after a finite number of steps. This makes the loop detection effective at curtailing divergence.

A more extensive account can be found in Appendix G.

Theorem 5.10 (Termination). The algorithm extended with loop detection terminates.

Decidability. In summary, if we take the soundness, completeness and termination of the subtyp-

ing together, we can conclude that the declarative subtyping is decidable.

Corollary 5.11 (Decidable Subtyping). In _MP
𝑖 , A <: B is decidable for any types A and B .

6 COHERENCE
A desired property for calculi with a merge operator is coherence. This ensures that no semantic

ambiguity arises in programs, i.e. programs and their subparts always have a single, unambiguous

meaning. Recall that the semantics of _MP
𝑖 is given indirectly, through an elaboration to _MP

c and

its operational semantics. Hence, coherence for _MP
𝑖 means that all possible elaborations of a

well-typed source expression for a given type are contextually equivalent in the target language.

Two target expressions, that may be syntactically different, are contextually equivalent iff, when
used in the context of any program, there is no difference in that program’s behavior. In our purely

functional and strongly normalising setting, we can reduce a program’s behavior to the value it

returns. Moreover, as usual, we can restrict ourselves without loss of generality to programs of

type Nat to facilitate the comparison of the results.

Program contexts express the above notion of using an expression in the context of a program

and are defined as follows:

Program contexts C F [·] | _x . C | C 𝐸 | 𝐸 C | C , , 𝐸 | 𝐸 , , C | C : A

Intuitively, a program context is an expression with a missing subexpression. This hole can be filled

in with an appropriate term to form an actual expression. Which terms are eligible to be used in a

program context is captured by the context typing judgment that consists of judgments of the form

C : (Γ ⇒ A) ↦→ (Γ′ ⇐ B )⇝ D.
12
Essentially, the judgment expresses that program context C

expects a term of type A under typing context Γ to form an expression of type B under context Γ′.

12
There are also judgments for the three other combinations of the two typing directions that appear in the judgment. The

full specification can be found in Appendix C.
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Moreover, the source context C elaborates straightforwardly to a target context D. Indeed, for the

coherence of _MP
𝑖 we do not account for all possible target contexts, but only for those that are the

image of a source context C. This restriction is important, as Bi et al. [2018] have demonstrated

that there are other target contexts that can distinguish between alternative elaborations.

We can now formally state coherence
13
.

Theorem 6.1 (Coherence of _MP
𝑖 ). For any C : (Γ ⇒ A) ↦→ (• ⇒ Nat)⇝ D,

if Γ ⊢ 𝐸 ⇒ A⇝ e1 and Γ ⊢ 𝐸 ⇒ A⇝ e2, then there is a value • ⊢ v : Nat such that D{e1} −→∗ v
and D{e2} −→∗ v .

Here, D{e} denotes the term that results from filling in the hole of D with expression e .
The remainder of this section summarizes our proof approach for coherence and discusses the

issues for our proof’s partiality. A more extensive account can be found in Appendix F.

6.1 A Context Dependent Logical Relation
We follow the general approach for showing coherence as NeColus. This approach is based on a

rather atypical heterogeneous binary logical relation, called canonicity, by Bi et al. [2019].

Canonicity. The canonicity relation is in fact two families of relations, one for values V and

one for expressions E, indexed by types. Two values v1 and v2 of types 𝜏1 and 𝜏2 are related by

canonicity, written (v1, v2) ∈ V(𝜏1, 𝜏2), iff any parts of the same type have the same meaning.

By parts we mean values v ′
1 and v ′

2 derivable from respectively v1 and v2 by means of subtyping

coercions. If two values have non-trivial (i.e., non-top-like) parts with the same type, we say that

they overlap. For instance, values ⟨1, true⟩ and 1 overlap since both have a part of type Nat; because
their overlapping part is the same, namely 1, these values are related by canonicity. In contrast,

⟨1, true⟩ and 2 are not related since their overlapping Nat parts are different.
While the _MP

𝑖 canonicity relation follows the above principles just like that of NeColus, there

are considerable differences in the actual definition because of the addition of modus ponens.

Context Dependency. A major complicating factor in the design of the new logical relation is that

the modus ponens subtyping rule introduces a form of context dependency. Indeed, when reasoning

about overlapping parts, the NeColus approach of decomposing terms and their types, and looking

at their syntactic components in isolation no longer works. Instead, in _MP
𝑖 the components have

to be considered in the context of the whole value they appear in. For example, the target term

_x : Nat. true does not overlap with false, since one is an arrow type and the other a boolean. Yet,

when _x : Nat. true is part of the larger term ⟨_x : Nat. true, 1⟩, a problematic overlap arises: via

modus ponens, the function applied to 1 to yields the boolean value true that differs from false.
To account for that dependency on the whole value, or contextual dependency for short, we

equip the canonicity relation of _MP
𝑖 with two additional indices: the whole values and their types.

Thus, we write

(v1, v2) ∈ V (v ′
1:𝜏

′
1;v

′
2:𝜏

′
2)J𝜏1;𝜏2K

to express that v1 and v2 are related values of types 𝜏1 and 𝜏2 that are components of respectively

the values v ′
1 of type 𝜏

′
1 and v ′

2 of type 𝜏
′
2.

We refer to Appendix F for the full definition of this context-dependent canonicity relationV
for values and its companion E for expressions.

13
There is a second statement for the type checking direction of the two hypotheses.
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Properties. A key property of the canonicity relation is coercion compatibility. This states that
any coercions of related values are related as well.

Lemma 6.2 (Coercion Compatibility).

If (v1, v2) ∈ V (v1:𝜏1;v2:𝜏2)J𝜏1;𝜏2K, then for all coercions c1, c2 and types 𝜏 ′1, 𝜏
′
2 such that c1 ⊢ 𝜏1 ⊲ 𝜏 ′1

and c2 ⊢ 𝜏2 ⊲ 𝜏 ′2 it holds that (c1 v1, c2 v2) ∈ E (c1 v1:𝜏
′
1;c2 v2:𝜏

′
2)J𝜏 ′1;𝜏

′
2K.

The following lemma asserts another key property of the value relation, which establishes its

connection to disjointness. This follows from the design principle that any overlap in types should

concern indistinguishable values. If there is no overlap, then this is trivially satisfied.

Lemma 6.3 (Disjointly-Typed Values are Related). If • ⊢ v1 : |A1 | and • ⊢ v1 : |A2 | where
A1 ∗A2, then (v1, v2) ∈ V (v1:|A1 |;v2:|A2 |)J|A1 |; |A2 |K.

6.2 Coherence Proof
With the canonicity relation in place, we can turn to the actual coherence proof. This proof is

split in two parts by the canonicity relation. The first and hardest part is to show that any two

elaborations of the same source term are related by canonicity; this is the so-called fundamental
property, . The second part is to show that related programs of type Nat return the same value; it

follows almost trivially from the definition of the canonicity relation.

Logical Equivalence. To express the fundamental property, we need to introduce a notion of

logical equivalence for open expressions on top of the canonicity relations for closed values (V) and

closed terms (E). Open expressions are considered in some typing context Δ. A closing substitution
𝛾 of a typing context Δ maps variables to values of the type specified in Δ. Two open expressions

are related iff applying any two related closing substitutions to e1 and e2, respectively, results in
E-related closed terms:

Δ1;Δ2 ⊢ e1 ≃log e2 : 𝜏1;𝜏2 ≜ ∀ (𝛾1;𝛾2) ∈ GJΔ1;Δ2K, (e1 [𝛾1], e2 [𝛾2]) ∈ V (e1 [𝛾1 ]:𝜏1;e2 [𝛾2 ]:𝜏2)J𝜏1;𝜏2K

Two closing substitutions 𝛾1 and 𝛾2 of Δ1 and Δ2 are related iff the two typing contexts differ

only in the types of the variables (otherwise, they contain the same variables and in the same order)

and the values that 𝛾1 and 𝛾2 contain for each variable areV-related.

Fundamental Property. Now we can state the fundamental property:
14

Theorem 6.4 (Fundamental property). If Γ ⊢ 𝐸 ⇒ A⇝ e1 and Γ ⊢ 𝐸 ⇒ A⇝ e2,
then |Γ |; |Γ | ⊢ e1 ≃log e2 : |A|; |A|.

Due to the complexity of the canonicity relation, we have proven this theorem under Conjectures 1

and 2. The proof proceeds by induction on the first hypothesis and calls coercion compatibility for

the T-sub case. The conjectures are used in the inductive cases of T-abs and T-merge.

Conjecture 1 (Compatibility of abstractions). If Δ, x : 𝜏 ′1;Δ, x : 𝜏 ′2 ⊢ e1 ≃log e2 : 𝜏1;𝜏2,
then Δ;Δ ⊢ _x : 𝜏 ′1. e1 ≃log _x : 𝜏 ′2. e2 : 𝜏 ′1 → 𝜏1;𝜏

′
2 → 𝜏2.

Conjecture 2 (Compatibility of pairs). If Δ;Δ ⊢ e1 ≃log e2 : 𝜏1;𝜏2
and Δ;Δ ⊢ e ′1 ≃log e

′
2 : 𝜏 ′1;𝜏

′
2 and 𝜏1 ∗𝜏 ′2 and 𝜏2 ∗𝜏 ′1, then Δ;Δ ⊢ ⟨e1, e ′1⟩ ≃log ⟨e2, e ′2⟩ : 𝜏1×𝜏 ′1;𝜏2×𝜏 ′2.

Regarding compatibility of pairs, a tuple value can result either from an explicit merge or from a

coercion applied on some value. In the first case, the subcomponents of the tuple are disjoint with

each other and thus related (by Lemma 6.3). In the second case, given that the original expression

14
There is a second statement for the type checking direction of the two hypotheses.
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is unambiguous and since coercions do not introduce ambiguity, the coercion application is also

unambiguous. However, because of the context dependency it is not easy to recover the original

expression and inspect it. For a similar reason, compatibility of abstraction is also hard to prove.

Logical Equivalence Entails Contextual Equivalence. Lastly, we need to show that any logically

related target expressions are contextually equivalent. The proof is fairly straightforward.

Theorem 6.5 (Logical Eqivalence Entails Contextual Eqivalence).

If |Γ |; |Γ | ⊢ e1 ≃log e2 : |A|; |A|, then for any C : (Γ ⇒ A) ↦→ (• ⇒ Nat)⇝ D, there is a value
• ⊢ v : Nat such that D{e1} −→∗ v and D{e2} −→∗ v .

Taken together, the (conditionally proven) fundamental property and the entailment of contextual

equivalence establish Theorem 6.1, the coherence of _MP
𝑖 .

7 RELATEDWORK
Resolution and Subtyping. The main contribution of our work is to unify resolution and subtyp-

ing into a single mechanism. Resolution is a common technique for automatically constructing

implicit values, such as Haskell’s type class dictionaries [Wadler and Blott 1989] or Scala’s im-
plicits [Odersky 2010]. Subtyping is widely used in Object-Oriented programming and various

other type systems [Barendregt et al. 1983; Chen 2003; Gay and Hole 2005; Pierce and Sangiorgi

1996]. In our work we interpret resolution as a special case of coercive subtyping [Chen 2003],

where coercions are generated automatically in a type-directed fashion and then “inserted” into

the program. This fits well with the common type-directed elaboration style usually employed by

resolution mechanisms, which work in a similar way.

As far as we are aware, the unification of subtyping and resolution is novel. Despite the fact that

languages like Scala integrate both mechanisms, only Jeffery [2019] combines both mechanisms

within his DIF calculus. Unfortunately—in contrast to _MP
𝑖 —DIF’s subtyping is known to be undecid-

able. Furthermore, Jeffery does not study the coherence of DIF. Scala implicits [Odersky 2010] have

motivated other researchers to look into the foundations of the mechanism. However, all previous

work on implicit calculi, including the implicit calculus [Oliveira et al. 2012], Cochis [Schrijvers
et al. 2019] and the SI calculus [Odersky et al. 2017], do not account for subtyping. Instead, they all

focus on a System F [Reynolds 1974] based language (without subtyping), and model resolution

for such a language. One aspect that these implicit calculi preserve from Scala is a biased form of

resolution where innermost implicits are preferred. In contrast, our disjointness approach is more

reminiscent of Haskell’s non-overlapping type class instances, which are unbiased.

The most common technique to algorithmically construct values by resolution, attributed

to Kowalski [1974], is commonly known as SLD resolution, or backwards chaining. Another tech-
nique, mostly used as a proof search method, is focusing [Andreoli 1992; Liang and Miller 2009;

Miller et al. 1989] and has been used to great effect in similar calculi (e.g. Cochis [Schrijvers et al.

2019] and Haskell with quantified class constraints [Bottu et al. 2017]) to create coherent resolution

mechanisms. Our subtyping algorithm of Section 5 closely resembles the focusing technique.

Coherence. Since Reynolds [1991] proved coherence for a calculus with intersection types, based

on denotational semantics, many researchers have studied it in a variety of typed calculi. Below we

summarize two commonly-found approaches in the literature: normal forms, and logical relations.

Breazu-Tannen et al. [1991] proved the coherence of a coercion translation from Fun [Cardelli

and Wegner 1985] extended with recursive types to System F, by showing that any two typing

derivations of the same judgment are normalizable to the same form. Curien and Ghelli [1994]

presented a translation of System 𝐹≤ into a calculus with explicit coercions and showed that any

derivations of the same judgment are translated to terms that are normalizable to a unique normal
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form. Following the same approach, Schwinghammer [2009] proved the coherence of coercion

translation from Moggi’s computational lambda calculus [Moggi 1991] with subtyping.

Central to the first approach is to find a unique normal form for derivations. However, this

approach cannot be directly applied to Curry-style calculi, i.e., where the lambda abstractions are

not type-annotated. Also, it does not work when the calculus has general recursion. Biernacki

and Polesiuk [2015] considered the coherence problem of coercion semantics. Their criterion for

coherence of the translation is contextual equivalence in the target calculus. They used a logical

relation for establishing coherence for coercion semantics, applicable in a variety of calculi, including

delimited continuations and control-effect subtyping.

As far as we know, the first work to use logical relations to show the coherence for intersection

types and the merge operator was that of Bi et al. [2018] for NeColus, and later for 𝐹+𝑖 [Bi et al.

2019]. The BCD subtyping in both calculi (as well as our own) poses a non-trivial complication over

Bernacki and Polesiuk’s simple structural subtyping. In their system any two coercions between

given types are behaviorally equivalent in the target language, so their coherence reasoning can all

take place in the target language. In NeColus, 𝐹+𝑖 , and _MP
𝑖 this is not the case; coercions can be

distinguished by arbitrary target programs but not those that are elaborations of source programs.

Hence, reasoning is restricted to the latter class, which is reflected in a more complicated notion of

contextual equivalence and the logical relation’s non-trivial treatment of pairs. In addition to these

complications, our logical relation (and consequently the coherence proof) is significantly more

convoluted than that of NeColus and 𝐹+𝑖 , due to the non-compositionality of Modus Ponens.

Intersection Types and the Merge Operator. Forsythe [Reynolds 1988] is one of the first languages
with intersection types and amerge-like operator. However, merges in Forsythe cannot containmore

than one function; this restriction ensures that the language is coherent. Similarly, Castagna et al.’s

_& calculus [Castagna et al. 1992] includes a special merge operator that works on functions only.

More recently, Dunfield [2012] showed significant expressiveness of type systems with intersection

types and a merge operator, at the cost of coherence. The limitation was addressed by Oliveira et al.

[2016], who introduced disjointness to ensure coherence. The combination of intersection types, a

merge operator and parametric polymorphism—while achieving coherence—was first studied in

the 𝐹𝑖 calculus [Alpuim et al. 2017]. Its successor, 𝐹+𝑖 [Bi et al. 2019] additionally incorporates BCD

subtyping [Barendregt et al. 1983], while remaining coherent. NeColus [Bi et al. 2018] has been the

starting point for our design of _MP
𝑖 and incorporates intersection types, a merge operator, and

BCD-style distributivity. Though neither NeColus nor _MP
𝑖 accounts for parametric polymorphism,

this is a direction we would like to explore in the future.

BCD Type System and Decidability. The BCD type system was first introduced by Barendregt

et al. [1983]. It is derived from a filter lambda model in order to characterize exactly the strongly

normalizing terms. The BCD type system features a powerful subtyping relation, which serves as a

base for ours. Bessai et al. [2014] showed how to type classes and mixins in a BCD-style record

calculus with the merge operator of Bracha and Cook [1990]. Their merge only operates on records,

and they only study a type assignment system. The decidability of BCD subtyping has been shown

in several works [Kurata and Takahashi 1995; Pierce 1989; Rehof and Urzyczyn 2011; Statman 2014].

Laurent [2012] has formalized the relation in Coq in order to eliminate transitivity cuts from it, but

he does not deliver an algorithm. Based on the work of Statman [2014], Bessai et al. [2016] show a

formally verified subtyping algorithm in Coq. Our algorithm follows the decision procedure of Bi

et al. [2018] and Pierce [1989]. However the addition of modus ponens requires significant changes

to the algorithm, and complicates the metatheory.
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Coq Type Classes. Coq employs a flexible type class system [Sozeau and Oury 2008b] that permits

overlapping instances and provides the user with the means to control resolution: Coq instances

are named and can be explicitly passed as arguments. The system poses no restrictions over the

implicit environment, like non-overlapping instances in Haskell or disjointness in _MP
𝑖 . Therefore,

coherence becomes a choice and responsibility of the user.

In contrast, _MP
𝑖 employs a stricter system that provides less control over subtyping. First, implicit

environments are not possible if not internally disjoint. Second, going against the intuition which

relates classes to types and instances to appropriately typed terms, expressions in _MP
𝑖 can be rather

viewed as typed implicit environments, which can be composed with the use of the merge operator.

Passing a value to a function in _MP
𝑖 can be seen as bringing an implicit environment in scope

within the body of the function. The function, then, can use that environment to infer values from

it, but it does not have access to the names of the instances contained in it. This is conceptually

different from the named instances of Coq that can be optionally passed explicitly by the user. Last,

Coq uses a global environment to which instances are inserted at their point of declaration.

8 CONCLUSION AND FUTUREWORK
This paper has shown that, with a small extension, subtyping with intersection types can be used

to model resolution. We have materialized our ideas in the design of _MP
𝑖 , a type-safe extension of

NeColus with the logical rule for Modus Ponens. This small extension significantly increases the

expressive power of _MP
𝑖 ’s predecessor, allowing us to model features such as type class resolution

and first-class environments.

Future Work. A natural avenue for future work is the extension of _MP
𝑖 with parametric poly-

morphism. When done naively, it can make the algorithm diverge and, like in Haskell, additional

conditions will have to be imposed to recover termination. Moreover, we believe that there are

various applications for our work that we wish to explore in the future.

In a Haskell-like setting, our design would enable multiple implicit environments, instead of a

single global one. Such environments could be first-class, could be explicitly passed as arguments or

returned as a result, or could be composed to form larger implicit environments. The programmer

would then be able to choose which of the implicit environments to use for resolution.

In a Scala-like setting, where subtyping is present, our design helps clarify the interaction between

resolution and subtyping. This is important, from the practical point of view, since the interaction

between the two mechanisms has been a continuous source of compiler bugs
15
. Furthermore, our

work could also be interesting to offer a unified view of subtyping and resolution, which could

significantly reduce the implementation effort for the two mechanisms.

Finally, languages like TypeScript can support a merge operator for intersection types via an

encoding [Alpuim et al. 2017]. Since Typescript has subtyping, intersection types and the merge

operator (via an encoding), it would be quite interesting to explore the potential to extend the

current formulation of intersection types in TypeScript with the ideas of our work.
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A COMPLETE SPECIFICATION OF _MP
c

Δ ⊢ e : 𝜏 Term Typing

x : 𝜏 ∈ Δ

Δ ⊢ x : 𝜏
typ-var

Δ ⊢ ⟨⟩ : ⟨⟩
typ-unit

Δ ⊢ i : Nat
typ-lit

Δ, x : 𝜏1 ⊢ e : 𝜏2

Δ ⊢ _x : 𝜏1. e : 𝜏1 → 𝜏2
typ-abs

Δ ⊢ e1 : 𝜏1 → 𝜏2 Δ ⊢ e2 : 𝜏1

Δ ⊢ e1 e2 : 𝜏2
typ-app

Δ ⊢ e1 : 𝜏1 Δ ⊢ e2 : 𝜏2

Δ ⊢ ⟨e1, e2⟩ : 𝜏1 × 𝜏2
typ-pair

Δ ⊢ e : 𝜏 c ⊢ 𝜏 ⊲ 𝜏 ′

Δ ⊢ c e : 𝜏 ′
typ-capp

c ⊢ 𝜏1 ⊲ 𝜏2 Coercion Typing

CT-refl

id𝜏 ⊢ 𝜏 ⊲ 𝜏

CT-trans

c2 ⊢ 𝜏2 ⊲ 𝜏3 c1 ⊢ 𝜏1 ⊲ 𝜏2

c2 ◦ c1 ⊢ 𝜏1 ⊲ 𝜏3

CT-top

top𝜏 ⊢ 𝜏 ⊲ ⟨⟩

CT-topArr

top→ ⊢ ⟨⟩ ⊲ ⟨⟩ → ⟨⟩

c1 ⊢ 𝜏1 ⊲ 𝜏2 c2 ⊢ 𝜏1 ⊲ (𝜏2 → 𝜏3)
c2 c1 ⊢ 𝜏1 ⊲ 𝜏3

CT-mp

c1 ⊢ 𝜏 ′1 ⊲ 𝜏1 c2 ⊢ 𝜏2 ⊲ 𝜏 ′2

c1 → c2 ⊢ 𝜏1 → 𝜏2 ⊲ 𝜏 ′1 → 𝜏 ′2
CT-arr

CT-pair

c1 ⊢ 𝜏1 ⊲ 𝜏2 c2 ⊢ 𝜏1 ⊲ 𝜏3

⟨c1, c2⟩ ⊢ 𝜏1 ⊲ 𝜏2 × 𝜏3

CT-projL

𝜋
𝜏1,𝜏2
1 ⊢ 𝜏1 × 𝜏2 ⊲ 𝜏1

CT-projR

𝜋
𝜏1,𝜏2
2 ⊢ 𝜏1 × 𝜏2 ⊲ 𝜏2

dist𝜏1,𝜏2,𝜏3→ ⊢ (𝜏1 → 𝜏2) × (𝜏1 → 𝜏3) ⊲ 𝜏1 → 𝜏2 × 𝜏3
CT-distArr
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e −→ e ′ Operational Semantics

step-id

(id𝜏 ) v −→ v

step-trans

(c1 ◦ c2) v −→ c1 (c2 v )

step-mp

(c2 c1) v −→ (c2 v ) (c1 v )

step-top

top𝜏 v −→ ⟨⟩

step-topArr

(top→ ⟨⟩) ⟨⟩ −→ ⟨⟩

step-arr

((c1 → c2) v1) v2 −→ c2 (v1 (c1 v2))

step-pair

⟨c1, c2⟩ v −→ ⟨c1 v , c2 v⟩

step-distArr

(dist𝜏,𝜏1,𝜏2→ ⟨v1, v2⟩) v3 −→ ⟨v1 v3, v2 v3⟩

step-projl

𝜋
𝜏1,𝜏2
1 ⟨v1, v2⟩ −→ v1

step-projr

𝜋
𝜏1,𝜏2
2 ⟨v1, v2⟩ −→ v2

step-beta

(_x : 𝜏 . e) v −→ [v/x ]e

step-app1

e1 −→ e ′1

e1 e2 −→ e ′1 e2

step-app2

e2 −→ e ′2

v1 e2 −→ v1 e
′
2

step-pair1

e1 −→ e ′1

⟨e1, e2⟩ −→ ⟨e ′1, e2⟩

step-pair2

e2 −→ e ′2

⟨v1, e2⟩ −→ ⟨v1, e ′2⟩

step-capp

e −→ e ′

c e −→ c e ′

B ADDITIONAL DEFINITIONS
Definition B.1 (Type Translation).

|A| = Nat
|⊤| = ⟨⟩
|A → B | = |A| → |B |
|A&B | = |A| × |B |

Definition B.2 (Typing Context Translation).

| • | = •
|Γ, x : A| = |Γ |, x : |A|

Definition B.3.

⊢ Γ Well formed typing context

⊢ •
WFC-empty

⊢ Γ x ∉ Γ

⊢ Γ, x : A
WFC-cons
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C CONTEXT TYPING
C : (Γ ⇒ A) ↦→ (Γ′ ⇒ B )⇝ D Context Typing I

[·] : (Γ ⇒ A) ↦→ (Γ ⇒ A)⇝ [·]
CTyp-empty1

C : (Γ ⇒ A) ↦→ (Γ′ ⇒ A1 → A2)⇝ D Γ′ ⊢ 𝐸2 ⇐ A1⇝ e

C 𝐸2 : (Γ ⇒ A) ↦→ (Γ′ ⇒ A2)⇝ D e
CTyp-appL1

Γ′ ⊢ 𝐸1 ⇒ A1 → A2⇝ e C : (Γ ⇒ A) ↦→ (Γ′ ⇐ A1)⇝ D
𝐸1 C : (Γ ⇒ A) ↦→ (Γ′ ⇒ A2)⇝ e D

CTyp-appR1

C : (Γ ⇒ A) ↦→ (Γ′ ⇒ A1)⇝ D Γ′ ⊢ 𝐸2 ⇒ A2⇝ e A1 ∗A2

C , , 𝐸2 : (Γ ⇒ A) ↦→ (Γ′ ⇒ A1 &A2)⇝ ⟨D, e⟩
CTyp-mergeL1

Γ′ ⊢ 𝐸1 ⇒ A1⇝ e C : (Γ ⇒ A) ↦→ (Γ′ ⇒ A2)⇝ D A1 ∗A2

𝐸1 , , C : (Γ ⇒ A) ↦→ (Γ′ ⇒ A1 &A2)⇝ ⟨e,D⟩
CTyp-mergeR1

C : (Γ ⇒ B ) ↦→ (Γ′ ⇐ A)⇝ D
(C : A) : (Γ ⇒ B ) ↦→ (Γ′ ⇒ A)⇝ D

CTyp-anno1

C : (Γ ⇐ A) ↦→ (Γ′ ⇐ B )⇝ D Context Typing II

CTyp-empty2

[·] : (Γ ⇐ A) ↦→ (Γ ⇐ A)⇝ [·]

CTyp-abs2

C : (Γ ⇐ A) ↦→ (Γ′, x : A1 ⇐ A2)⇝ D x ∉ Γ′

_x . C : (Γ ⇐ A) ↦→ (Γ′ ⇐ A1 → A2)⇝ _x .D

C : (Γ ⇐ A) ↦→ (Γ′ ⇒ B )⇝ D Context Typing III

C : (Γ ⇐ A) ↦→ (Γ′ ⇒ A1 → A2)⇝ D Γ′ ⊢ 𝐸2 ⇐ A1⇝ e

C 𝐸2 : (Γ ⇐ A) ↦→ (Γ′ ⇒ A2)⇝ D e
CTyp-appL2

Γ′ ⊢ 𝐸1 ⇒ A1 → A2⇝ e C : (Γ ⇐ A) ↦→ (Γ′ ⇐ A1)⇝ D
𝐸1 C : (Γ ⇐ A) ↦→ (Γ′ ⇒ A2)⇝ e D

CTyp-appR2

C : (Γ ⇐ A) ↦→ (Γ′ ⇒ A1)⇝ D Γ′ ⊢ 𝐸2 ⇒ A2⇝ e A1 ∗A2

C , , 𝐸2 : (Γ ⇐ A) ↦→ (Γ′ ⇒ A1 &A2)⇝ ⟨D, e⟩
CTyp-mergeL2

Γ′ ⊢ 𝐸1 ⇒ A1⇝ e C : (Γ ⇐ A) ↦→ (Γ′ ⇒ A2)⇝ D A1 ∗A2

𝐸1 , , C : (Γ ⇐ A) ↦→ (Γ′ ⇒ A1 &A2)⇝ ⟨e,D⟩
CTyp-mergeR2

C : (Γ ⇐ B ) ↦→ (Γ′ ⇐ A)⇝ D
C : A : (Γ ⇐ B ) ↦→ (Γ′ ⇒ A)⇝ D

CTyp-anno2
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C : (Γ ⇒ A) ↦→ (Γ′ ⇐ B )⇝ D Context Typing IV

C : (Γ ⇒ A) ↦→ (Γ′, x : A1 ⇐ A2)⇝ D x ∉ Γ′

_x . C : (Γ ⇒ A) ↦→ (Γ′ ⇐ A1 → A2)⇝ _x .D
CTyp-abs1

D META-FUNCTIONS
The three meta-functions we used in Section 5 are formally defined as follows:

Definition D.1.

J[]Kc,B1,B2

&
= c

JA,LKc,B1,B2

&
= (id|A| → JLKc,B1,B2

&
) ◦ dist|A|,|L→→B1 |,|L→→B2 |

→

Definition D.2.

JLKB1,B2

&
= JLK

(id|B1 &B2 | ),B1,B2

&

Definition D.3.

J[]K⊤ = id|⊤|
JA,LK⊤ = (top|A| → JLK⊤) ◦ top→

E COMPLETE DERIVATION EXAMPLES OF TYPING AND ALGORITHMIC
SUBTYPING

Typing Derivation Example. Below we show the typing derivation for the example expression

1 : Nat&Nat, taken from Section 4.4.

⊢ •
• ⊢ 1 ⇒ Nat⇝ 1

T-nat

Nat <: Nat⇝ idNat
S-refl

Nat <: Nat⇝ idNat
S-refl

Nat <: Nat&Nat⇝ ⟨idNat, idNat⟩
S-and

• ⊢ 1 ⇐ Nat&Nat⇝ ⟨idNat, idNat⟩ 1
T-sub

• ⊢ 1 : Nat&Nat ⇒ Nat&Nat⇝ ⟨idNat, idNat⟩ 1
T-anno

The generated target term is ⟨idNat, idNat⟩ 1, which reduces to ⟨1, 1⟩, following the operational

semantics of _MP
c .

Algorithmic Subtyping Derivation Example. Here we illustrate how the algorithm of Section 5.1

works with an example derivation. Due to space restrictions, we shorten Nat, String, and Bool to
N, S, and B , respectively, and omit all mention of coercions.

[] ⊢R S ≺: ⊤
AR-top 𝐷2

( [], S); [];⊤ → (B& (B → N)) ⊢L ⊤ → (B& (B → N)) ≺: N
AL-arr

( [], S) ⊢R ⊤ → (B& (B → N)) ≺: N
AR-nat

[] ⊢R ⊤ → (B& (B → N)) ≺: S → N
AR-arr

⊤ → (B& (B → N)) ≺: S → N
A-main
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where 𝐷2 is the following derivation:

𝐷3 []; (S, []);⊤ → (B& (B → N)) ⊢L N ≺: N
AL-nat

[]; (S, []);⊤ → (B& (B → N)) ⊢L B → N ≺: N
AL-mp

[]; (S, []);⊤ → (B& (B → N)) ⊢L B& (B → N) ≺: N
AL-and2

where 𝐷3 is the following derivation:

[] ⊢R S ≺: ⊤
AR-top 𝐷4

( [], S); [];⊤ → (B& (B → N)) ⊢L ⊤ → (B& (B → N)) ≺: B
AL-arr

( [], S) ⊢R ⊤ → (B& (B → N)) ≺: B
AR-bool

[] ⊢R ⊤ → (B& (B → N)) ≺: S → B
AR-arr

where 𝐷4 is the following derivation:

( [], S); [];⊤ → (B& (B → N)) ⊢L B ≺: B
AL-bool

( [], S); [];⊤ → (B& (B → N)) ⊢L B& (B → N) ≺: B
AL-and1

F THE LOGICAL RELATION FOR _MP
𝑖

Figure 11 shows the _MP
𝑖 definitions of the logical relationsV for values and E for terms. These

definitions reconcile the context-dependent nature of modus ponens with the structural recursion

needed for the well-foundedness of the definitions.

The intent of the relations is of course the same as in NeColus, to only allow semantically

indistinguishable overlap. Also the three general principles at the basis of their definition are

preserved: 1) two values of type Nat have indistinguishable overlap only when they are identical,

2) related functions should take related inputs to related outputs, and 3) the coercion compatibility

property should hold.

The first novelty to deal with modus ponens is that the family of value relations is equipped with

additional indices v ′
1 : 𝜏 ′1 and v ′

2 : 𝜏 ′2 to keep track of the values that v1 and v2 are components

of; we call these indices the respective contexts of v1 and v2. To be precise, the intention is that

we use (v1, v2) ∈ V (v ′
1:𝜏

′
1;v

′
2:𝜏

′
2)J𝜏1;𝜏2K only when there exist coercions c1 and c2 such that firstly

c1 ⊢ 𝜏 ′1 ⊲ 𝜏1 and c2 ⊢ 𝜏 ′2 ⊲ 𝜏2, and secondly c1 v
′
1 −→∗ v1 and c2 v

′
2 −→∗ v2. When the contexts

and the values are the same, we sometimes omit those additional indices, i.e., we abbreviate

(v1, v2) ∈ V (v1:𝜏1;v2:𝜏2)J𝜏1;𝜏2K to (v1, v2) ∈ VJ𝜏1;𝜏2K. The term relation E is equipped with similar

context indices; the one difference is that, just like the elements in the term relation, these indices

are terms rather than values.

Unmodified Cases. The first three cases of the V definition are essentially the same as those of

NeColus: Two natural numbers are related if they are identical, which is a direct implementation

of the first general principle. Also, a pair is related to another value if both components of the pair

are related to that value, which is a similar specialisation of the coercion compatibility property to

coercions 𝜋1 and 𝜋2.

New Modus Ponens Cases. The next two cases that relate functions to non-functions are different

from NeColus because of the addition of the modus ponens coercion. In NeColus all functions are

related to all non-functions because the only common types they can be coerced to are top-like

types whose values are indistinguishable.
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(v1, v2) ∈ V (v ′
1:𝜏

′
1;v

′
2:𝜏

′
2)J𝜏1;𝜏2K

(v1, v2) ∈ V (v ′
1:𝜏

′
1;v

′
2:𝜏

′
2)JNat;NatK ≜ ∃𝑖, v1 = v2 = 𝑖

(⟨v1, v2⟩, v3) ∈ V (v ′
1:𝜏

′
1;v

′
2:𝜏

′
2)J𝜏1 × 𝜏2;𝜏3K ≜ (v1, v3) ∈ V (v ′

1:𝜏
′
1;v

′
2:𝜏

′
2)J𝜏1;𝜏3K

∧ (v2, v3) ∈ V (v ′
1:𝜏

′
1;v

′
2:𝜏

′
2)J𝜏2;𝜏3K

(v3, ⟨v1, v2⟩) ∈ V (v ′
1:𝜏

′
1;v

′
2:𝜏

′
2)J𝜏3;𝜏1 × 𝜏2K ≜ (v3, v1) ∈ V (v ′

1:𝜏
′
1;v

′
2:𝜏

′
2)J𝜏3;𝜏1K

∧ (v3, v2) ∈ V (v ′
1:𝜏

′
1;v

′
2:𝜏

′
2)J𝜏3;𝜏2K

(v1, v2) ∈ V (v ′
1:𝜏

′
1;v

′
2:𝜏

′
2)J𝜏1 → 𝜏2;𝜏K ≜ (𝜏 not function type)

∀c, c ⊢ 𝜏 ′1 ⊲ 𝜏1 ⇒ (v1 (c v ′
1), v2) ∈ E (v ′

1:𝜏
′
1;v

′
2:𝜏

′
2)J𝜏2;𝜏K

(v1, v2) ∈ V (v ′
1:𝜏

′
1;v

′
2:𝜏

′
2)J𝜏 ;𝜏1 → 𝜏2K ≜ (𝜏 not function type)

∀c, c ⊢ 𝜏 ′2 ⊲ 𝜏1 ⇒ (v1, v2 (c v ′
2)) ∈ E (v ′

1:𝜏
′
1;v

′
2:𝜏

′
2)J𝜏 ;𝜏2K

(v1, v2) ∈ V (v ′
1:𝜏

′
1;v

′
2:𝜏

′
2)J𝜏1 → 𝜏2;𝜏3 → 𝜏4K ≜©«

∀v v ′ 𝜏0 𝜏
′
0 c c ′ d d ′ 𝜏01 𝜏02,

d ⊢ 𝜏01 ⊲ 𝜏1 ⇒ d ′ ⊢ 𝜏02 ⊲ 𝜏3 ⇒ (d v , d ′ v ′) ∈ E (v :𝜏01;v ′:𝜏02)J𝜏1;𝜏3K ⇒
c ⊢ 𝜏 ′1 ⊲ 𝜏01 → 𝜏0 ⇒ c ′ ⊢ 𝜏 ′2 ⊲ 𝜏02 → 𝜏 ′0 ⇒
(v1 (d v ), v2 (d ′ v ′)) ∈ E ( ⟨v1 (d v ),c v ′

1 v ⟩:𝜏2×𝜏0;⟨v2 (d′ v ′),c′ v ′
2 v ′⟩:𝜏4×𝜏′0)J𝜏2;𝜏4K

ª®®®®®¬
∧ ∀c, c ⊢ 𝜏 ′1 ⊲ 𝜏1 ⇒ (v1 (c v ′

1), v2) ∈ E (v ′
1:𝜏

′
1;v

′
2:𝜏

′
2)J𝜏2;𝜏3 → 𝜏4K

∧ ∀c, c ⊢ 𝜏 ′2 ⊲ 𝜏3 ⇒ (v1, v2 (c v ′
2)) ∈ E (v ′

1:𝜏
′
1;v

′
2:𝜏

′
2)J𝜏1 → 𝜏2;𝜏4K

(v1, v2) ∈ V (v ′
1:𝜏

′
1;v

′
2:𝜏

′
2)J𝜏1;𝜏2K ≜ true (otherwise)

(e1, e2) ∈ E (e′1:𝜏′1;e′2:𝜏 ′2)J𝜏1;𝜏2K

(e1, e2) ∈ E (e′1:𝜏′1;e′2:𝜏 ′2)J𝜏1;𝜏2K ≜
∃v1 v2 v ′

1 v
′
2, e1 −→∗ v1 ∧ e2 −→∗ v2 ∧ e ′1 −→∗ v ′

1 ∧ e ′2 −→∗ v ′
2

∧ (v1, v2) ∈ V (v ′
1:𝜏

′
1;v

′
2:𝜏

′
2)J𝜏1;𝜏2K

Fig. 11. Logical Relations

This is not so in _MP
c , where the S-mp rule can be used to derive a non-function value from a

function. Hence, our logical relation states that a function and non-function are related only if

all S-mp-enabled applications of the function are related to the non-function value. Using modus

ponens implies that not only the function, but also its argument is derived from the original value.

This is why the two symmetric cases of the relation universally quantify over all coercions that

derive an argument of the appropriate input type.

New Function Case. The one-but-last case, which relates two functions, is the most complicated

one. It states that two functions are related iff they satisfy three conditions. These three conditions

concern the two different ways in which the functions can be applied to an argument.

The second and third condition are a newway compared toNeColus and analogous to function/non-

function cases; these are the cases where one of the two functions is applied to an argument through

S-mp. They expose that ⟨_x : Nat. _y : Bool. y, 1⟩ can be coerced to _y : Bool. y and thus has

distinguishable overlap with, for instance, _y : Bool. true.
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The first condition corresponds to the NeColus condition for function types and captures the

main design principle that related functions take related inputs to related outputs. However, as

a consequence of modus ponens subtyping, the formulation is much more elaborate. First, we

need to consider the context indices. An explicit function application demarcates the point where

the implicit subtyping derivation ends and, therefore, the previous context is abandoned. One

might thus expect the following much simpler formulation of the condition, where the result of the

function application becomes its own new context:

∀(v , v ′) ∈ V (v :𝜏1;v ′:𝜏3)J𝜏1;𝜏3K, (v1 v , v2 v ′) ∈ E (v1 v :𝜏2;v2 v ′:𝜏4)J𝜏2;𝜏4K

Sadly, this formulation does not properly account for functions that – unlike v1 and v2 – can be

derived from the context without them being structural components. Consider the composition

of multiple subcomponents by means of the S-distArr rule. For instance, that rule can derive

from the context⟨_x : Bool. 1, _x : Bool. true⟩ the function _x : Bool. ⟨1, true⟩ which is not

a syntactic component of the initial type. In NeColus, we do not have to separately account

for these cases, because the components of the function body never interact and can thus be

considered separately. For that reason, the logical relation of NeColus does not explicitly have

to consider S-distArr. However, in _MP
𝑖 matters are different because of S-mp. When the context

is ⟨_x : Bool. _y : Bool. 1, _x : Bool. true⟩, then using S-distArr we can derive the function

_x : Bool. ⟨_y : Bool. 1, true⟩. When this function is explicitly applied to a value, we get a new

original value ⟨_y : Bool. 1, true⟩ whose two components can interact through S-mp. Thus, just

checking _x : Bool. _y : Bool. 1 on its own is insufficient. To reckon with all ways in which

the functions v1 and v2 under consideration can be combined by means of S-distarr with other

functions derived from the context, we augment the condition as shown in the following extended

condition:

∀(v , v ′) ∈ E (v :𝜏1;v ′:𝜏3)J𝜏1;𝜏3K, ∀c ⊢ 𝜏 ′1 ⊲ 𝜏1 → 𝜏0, ∀c ′ ⊢ 𝜏 ′2 ⊲ 𝜏3 → 𝜏 ′0,

(⟨v1 v , c v ′
1 v⟩, ⟨v2 v ′, c ′ v ′

2 v
′⟩) ∈ E ( ⟨v1 v ,c v ′

1 v ⟩:𝜏2×𝜏0;⟨v2 v ′,c′ v ′
2 v ′⟩:𝜏4×𝜏′0)J𝜏2 × 𝜏0;𝜏4 × 𝜏 ′0K

Yet, this formulation breaks the well-foundedness of the recursive definition because 𝜏2 × 𝜏0 and

𝜏4 × 𝜏 ′0 are not necessarily smaller than 𝜏1 → 𝜏2 and 𝜏3 → 𝜏4, respectively. Fortunately, we can

mention the additional components only in the context index to make them available for interaction

through S-mp. This restores the well-foundedness of the definition.

∀(v , v ′) ∈ E (v :𝜏1;v ′:𝜏3)J𝜏1;𝜏3K, ∀c ⊢ 𝜏 ′1 ⊲ 𝜏1 → 𝜏0, ∀c ′ ⊢ 𝜏 ′2 ⊲ 𝜏3 → 𝜏 ′0,

(v1 v , v2 v ′) ∈ E ( ⟨v1 v ,c v ′
1 v ⟩:𝜏2×𝜏0;⟨v2 v ′,c′ v ′

2 v ′⟩:𝜏4×𝜏′0)J𝜏2;𝜏4K

There is one last twist. Rule S-distArr can still be used on two function components with different

domains. In particular, we can make the domains agree by means of the contra-variant part of

the S-arr rule. For instance, we can derive _x : Nat × Bool. ⟨_y : Bool. 1, true⟩ from the original

value ⟨_x : Bool. _y : Bool. 1, _x : Nat × Bool. true⟩ by first strengthening the domain of the

first component before distributing the product over the functions. This explains the remaining

complication in the actual condition of Figure 11.

Top Cases. Finally, the last case summarizes all combinations of ⊤with itself and with Nat, where
all values are trivially related.

Terms. Figure 11 also contains the definition of the logical relation for terms, whose form is

fairly standard for strongly normalising languages. The one extension is that we also normalise the

original-term indices and not just the terms in the relation.
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Rstart L

AR-and

AR-arr AR-nat

AL-and1, AL-and2,

AL-arr, AL-mp

AL-arr, AL-mp

Fig. 12. Dependency graph of algorithmic subtyping

G TERMINATION OF ALGORITHMIC SUBTYPING
In this section, we prove that with the use of a loop detection mechanism, the subtyping algorithm

presented in Figure 9 of Section 5 terminates for any input types, A and B .

The proof is partly mechanized in Coq and partly written in LATEX. The mechanized part is

presented here in the form of lemmas, while the written part is contained in the text and the

remarks of this section. A table at the end of this section links the lemmas presented here with

their mechanized counterparts.

G.1 The proof
The subtyping algorithm uses a left and a right focusing mode. Figure 12 shows the dependency

graph of the two modes. (L) and (R) stand for left- and right-focusing, respectively, and the gray

edges of the graph are those that switch between modes. The algorithm always starts with right-

focusing, which decomposesB inL ⊢R A ≺: B , and eventually enters the left-focusing phase which

works by decomposing A. In left focusing mode, rules AL-arr and AL-mp recursively continue in

this mode, while at the same time triggering back the right-focusing mode.

In an effort to detect potential diverging behavior, we can start by examining a variation of

the algorithm where the interdependencies of the focusing modes are removed, as shown in the

black-colored part of Figure 12, thus isolating the two modes of the algorithm
16
. Since both modes

follow the structure of their corresponding focal type, they are both terminating when considered

in isolation. Adding back the left-focusing dependency in rule AR-nat still retains termination,

because left-focusing (which still ignores the right-focusing calls) terminates. To conclude, the only

diverging loops that could possibly occur involve mutual recursion between both focusing modes,

through the rules AL-arr and AL-mp.

Figure 13 offers a visual aid to closely examine the shape of these loops. It shows part of an

arbitrary computation tree of the algorithmic subtyping process, including backtracking branches.

The algorithm starts by applying a number of right-focusing rules (represented by a dotted pink path)

until it reaches an AR-nat rule application. Now it continues in left-focusing mode (represented

by a dashed purple path), sometimes igniting a new right-focusing branch through rules AL-

arr and AL-mp, as shown in the rightmost left-focusing path of Figure 13. In the computation

tree, a path that has an initial part in right-focusing mode, its remainder in left-focusing mode

and ends on a AL-arr or AL-mp application, represents what we call a single loop of mutual

recursion between the two focusing modes. Informally, it is a computation path of the form

⊢R → · · · →⊢R →⊢L → · · · →⊢L →⊢R, where the last node is the right-focusing premise of an

16
In this variation, the right-focusing premises in the left-focusing rules AL-mp and AL-arr, and the left-focusing premise

of the right-focusing rule AR-nat are stripped away. This makes the algorithm incomplete w.r.t. the declarative version, but

this is not a concern here.
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[] ⊢R A ≺: B

AR-and

AR-nat

AL-mp

AR-nat

AL-arr

AL-mp

AL-arr

AL-arr

A sequence of right-focusing rules

A sequence of left-focusing rules

Arrow-loop endpoint

Mp-loop endpoint

Backtracking point

Fig. 13. Visualization of the ↩→ relation

AL-arr or an AL-mp rule. If it ends with an AL-arr rule application, we call it an arrow-loop, and
otherwise an mp-loop. For instance, in Figure 13 all the paths that start at the root and end on an

outlined AL-arr or AL-mp rule are single loops.

It is now clearer that every right-focusing judgment to be resolved, signifies the start of a number

(possibly zero) of sequences (possibly empty) of single loops. Therefore, a single loop, itself ending

in a right-focusing judgment to be resolved, can be considered as the first loop in a number of

sequences of single loops of the same kind (arrow- or mp-loops). Our termination proof examines

the finiteness of the number of single loop sequences that the algorithm might go though, as well

as the finiteness of the size of each of those sequences.

We will show that a) arrow-loops are not a source of non-termination, and b) a loop-detection

mechanism that tracks previously tried mp-loops makes the algorithm terminating. For that, we

define two relations, one for arrow-loops and one for mp-loops, each capturing the ways in which

left-focusing triggers the right-focusing mode through an application of the AL-arr or the AL-mp

rule, respectively.

𝐴 ∈&𝐵 Intersection mem-

bership

𝐴 ∈&𝐴
𝐴 ∈&B1

𝐴 ∈&B1 &B2

𝐴 ∈&B2

𝐴 ∈&B1 &B2

Fig. 14. Definition of intersection

membership

Their definition uses an auxiliary intersection-membership

relation, written as A ∈&B and defined in Figure 14. The for-

mulaA ∈&B expresses thatB is the typeA possibly intersected

with more types.

B = (. . .&(A& . . .))& . . .

We say that type A is a component of type B .

The following results on intersection membership are useful

for the rest of the proof. The definition of the left-arrow depth

function | | · | |, here referred to as our norm, is given in Section 5.2

of the paper.

Lemma G.1 (Intersection membership decreases the

norm). If A ∈&B , then | |A| | ≤ | |𝐵 | |.
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(A ≺: B ) ↩→ (B ′ ≺: A′) Single arrow-loops

LA-base

B1 → B2 ∈&B

(A1 → A2 ≺: B ) ↩→ (B1 ≺: A1)

LA-mp

(A2 ≺: B ) ↩→ (B ′ ≺: A′)
(A1 → A2 ≺: B ) ↩→ (B ′ ≺: A′)

LA-arr

B1 → B2 ∈&B (A2 ≺: B2) ↩→ (B ′ ≺: A′)
(A1 → A2 ≺: B ) ↩→ (B ′ ≺: A′)

LA-andL

(A1 ≺: B ) ↩→ (B ′ ≺: A′)
(A1 &A2 ≺: B ) ↩→ (B ′ ≺: A′)

LA-andR

(A2 ≺: B ) ↩→ (B ′ ≺: A′)
(A1 &A2 ≺: B ) ↩→ (B ′ ≺: A′)

Fig. 15. Single arrow-loops, formalized

Remark 1. Every type has a finite number of components. Formally, for a given type B , the set
{A | A ∈&B } is finite. We also say that, given type B , the intersection membership relation produces
a finite number of elements (that belong to that relation).

G.2 Arrow-loops are not a source of non-termination
The arrow-loop relation, ↩→, between right-focusing subtyping judgments, shown in Figure 15,

captures single cycles of mutual recursion through an AL-arr rule application. Informally, (A ≺:
B ) ↩→ (B ′ ≺: A′) expresses that resolving [] ⊢R A ≺: B , will trigger resolving [] ⊢R B ′ ≺: A′

through a single arrow loop.

There are many ways in which AL-arr can be reached starting from the right-focusing mode.

The most immediate case is when resolving [] ⊢R A1 → A2 ≺: B1 → B2, which triggers [] ⊢R
B1 ≺: A1. We can generalize this to account for intersections of arrow types in the right hand

side of the initial subtyping judgment. Thus, trying to resolve [] ⊢R A1 → A2 ≺: B will ignite

a right-focusing call to resolve [] ⊢R B1 ≺: A1, for every arrow type component B1 → B2 of

B (LA-base). In addition, for every arrow type component B1 → B2 ∈& B , if starting from

[] ⊢R A2 ≺: B2 triggers an arrow-loop on [] ⊢R B ′ ≺: A′
, then that loop is reached also starting

from [] ⊢R A1 → A2 ≺: B . These are arrow-loops that occur under the left-focusing subderivation

of an AL-arr rule (LA-arr). Similarly, rules LA-andL, LA-andR and LA-mp encode the arrow-loops

that occur under an application of AL-and1 or AL-and2 or the left-focusing subderivation of

AL-mp, respectively.

In Figure 13, ↩→ relates the right-focusing judgment at the root of the tree with the right-focusing

premise of every AL-arr application that is outlined with green borders. The innermost AL-arr

application is not outlined because, starting from the root, it takes more than one (in particular, it

takes two) single mutual recursion cycles to reach it. Such arrow-loops, nested in the right-focusing

subderivation of a previously applied AL-arr, are encoded in the transitive closure of ↩→.

Remark 2. Given types A and B , because of Remark 1, rule LA-base produces a finite number
of elements (possibly zero) in the ↩→-relation. Since the rest of the rules in Figure 15 are structurally
decreasing on argument A, it follows that given types A and B , the set {(B ′,A′) | (A ≺: B ) ↩→
(B ′ ≺: A′)})} is finite. Note that the left premise of rule LA-arr contributes by a finite factor in the
number of elements that this rule can produce.
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B ↬
A
B ′

Single mp-loops

LM-base

B ↬
A1→A2

A1

LM-mp

B ↬
A2

B ′

B ↬
A1→A2

B ′

LM-arr

B1 → B2 ∈&B B2 ↬
A2

B ′

B ↬
A1→A2

B1 → B ′

LM-andL

B ↬
A1

B ′

B ↬
A1 &A2

B ′

LM-andR

B ↬
A2

B ′

B ↬
A1 &A2

B ′

Fig. 16. Single mp-loops, formalized

Lemma G.2 (Arrow-loops strictly decrease the norm). If (A ≺: B ) ↩→ (B ′ ≺: A′), then
| | [] ⊢R A ≺: B | | < | | [] ⊢R B ′ ≺: A′ | |.

It follows from the above remark and from Lemma G.2 that whenever the algorithm is in

right-focusing mode, it re-enters that mode through AL-arr a finite number of times and with a

right-focusing judgment that is strictly smaller than the previous (w.r.t. our norm). This ensures

that arrow-loops are not a source of non-termination.

G.3 Loop detection for termination of MP-loops
Figure 16 shows the definition of the mp-loop family of relations, which, similarly to the arrow-loop

relation, encodes single cycles of mutual recursion through AL-mp rule applications. Informally,

B ↬
A
B ′

expresses that resolving the judgment [] ⊢R A ≺: B , generates the call [] ⊢R A ≺: B ′

through a single mp-loop.

A single right-focusing judgment may generate several mp-loops. The most immediate case,

encoded by rule LM-base, is when resolving [] ⊢R A1 → A2 ≺: B , which triggers the resolution of

[] ⊢R A1 → A2 ≺: A1. Subsequent applications of theAL-mp rule that occur under the left-focusing

branch of a previous AL-mp rule application are encoded by rule LM-mp. Similarly, rule LM-arr

encodes applications of the AL-mp rule under the left-focusing branch of a previously applied

AL-arr rule. Lastly, rules LM-andL and LM-andR encode mp-loops that occur under an application

of AL-and1 and AL-and2, respectively.

Note that for a type A,↬
A
is a set (not a multiset) and, thus, contains unique pairs of related

right-focusing judgments. Put differently, starting resolution on [] ⊢R A ≺: B , the judgment

does not distinguish between distinct applications of the AL-mp rule that generate the same right-

focusing call [] ⊢R A ≺: B ′
. For example, starting with [] ⊢R A1 → A2 ≺: Nat&Bool → Nat, the

algorithm branches by rule AR-and and tries to apply the AL-mp rule within both branches. Both

applications generate the same right-focusing call, [] ⊢R A1 → A2 ≺: A1, but are encoded as one

mp-loop through rule LM-base. This justifies the use of an arbitrary type B in the left component

of the relation↬
A1→A2

, in the conclusion of the rules LM-base and LM-arr of Figure 16.

Remark 3. The rules of the mp-loop relation family are structurally decreasing on the index type
A. Therefore, taking into consideration Remark 1 to account for rule LM-arr, it follows that for given
types A and B , the set {𝐵′ | B ↬A B ′} is finite.

Lemma G.3 (Mp-loops non-strictly decrease the norm). If B ↬A B ′, then | | [] ⊢R A ≺: B | | ≤
| | [] ⊢R A ≺: B ′ | |.
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Because a mp-loop signifies the start of a number of sequences of mp-loops to follow, Remark 3

essentially means that when the algorithm is in right-focusing mode it will generate a finite number

of mp-loop sequences. However, Lemma G.3 does not guarantee that the right-focusing judgment

triggered by a mp-loop is strictly smaller than the initial right-focusing judgment. As a result,

although the number of mp-loop sequences is finite, not all sequences are necessarily finite. Some

of them might be infinite, with each mp-loop triggering a right-focusing call on a judgment of

equal norm.

In the following subsection, we show that the algorithm’s search space, consisting of all possible

recursive calls that the algorithm may trigger given an initial subtyping judgment to resolve, is

finite. As a direct result, the algorithm has a finite number of possible mp-loops to follow. Then, by

the pigeon hole principle and the algorithm’s determinism, we can conclude that for an mp-loop

sequence to be infinite, it must contain an infinite repetition of a finite number of finite mp-loop

subsequences. Thus, a mechanism that detects repetitions of mp-loops is sufficient to salvage the

algorithm from non-termination.

G.4 The search space is finite
To establish the finiteness of the algorithm’s search space, we only need to consider the subspace

generated by rule AL-mp, since it is the only rule that threatens the algorithm’s termination. For

that, we devise the type generator relation family, shown at the top of Figure 17, which uses two

auxiliary definitions, B
A
⊲⊳
𝑛
B ′

and A ⊲⊳
𝑛
B .

Although an understanding of the two auxiliary definitions is necessary to understand what the

type generator family relates, for the purposes of this proof we only need to realize two properties

it satisfies. First, the type generator relation family is an over-approximation of all possible mp-loop

sequences, given an initial right-focusing subtyping judgment to resolve, and second, we need a

finiteness property similar to that in Remarks 1, 2 and 3. The first property establishes that the

type generator family contains an encoding of the algorithm’s subspace that is generated by the

Al-mp rule (or, equivalently, by mp-loops). Then, the finiteness property allows us to conclude that

the algorithm’s subspace generated by mp-loops is finite.

G.4.1 An over-approximation of mp-loop sequences. Before we proceed, we formalize the notion of a

sequence of mp-loops. Naturally, sequences of mp-loops are modeled by the transitive closure of the

mp-loops relation family, as shown in Figure 18. A member B ↬↬
A
B ′′

of the ↬↬
A
-relation models a

sequence of mp-loops that starts with a [] ⊢R A ≺: B and ends with a [] ⊢R A ≺: B ′′
right-focusing

judgment, after possibly going through intermediate mp-loops of the form [] ⊢R A ≺: B ′
.

Lemma G.4 justifies that the type generator family is an over-approximation of all possible

mp-loop sequences.

Lemma G.4. If B ↬↬A B ′, then B
A
⊲⊳ B ′.

G.4.2 A finiteness property for the over-approximation. First, we examine the look-up relation

family, on which the definition of the type generator family depends.

Remark 4. Consider a member A ⊲⊳
𝑛
A′ of the look-up relation family. The inductive rules of this

definition are decreasing on the lexicographic order of the pair (𝑛,A). Therefore, given a natural
number 𝑛 and a type A, the set {A′ | A ⊲⊳

𝑛
A′} is finite.

Next, we examine the auxiliary type generator family. Consider an element B
A
⊲⊳
𝑛

B ′
. From

Remark 4, it follows that given 𝑛, 𝐴 and 𝐵, rule SBx-done produces a finite number of elements
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B
A
⊲⊳ B ′

Type generator relation family

SB-main

B
A
⊲⊳
0
B ′

B
A
⊲⊳ B ′

B
A
⊲⊳
𝑛
B ′

Auxiliary type generator relation family

SBx-done

A ⊲⊳
𝑛
A′

B
A
⊲⊳
𝑛
A′

SBx-more1

A ⊲⊳
𝑛
A1 B

A
⊲⊳
𝑛+1

A2

B
A
⊲⊳
𝑛
A1 → A2

SBx-more2

B ⊲⊳
𝑛
B1 B

A
⊲⊳
𝑛+1

B2

B
A
⊲⊳
𝑛
B1 → B2

A ⊲⊳
𝑛
B Look-up relation family

LU-here

A1 → A2 ⊲⊳
0
A1

LU-there

A2 ⊲⊳
𝑛
B

A1 → A2 ⊲⊳
𝑛+1

A1

LU-skip

A2 ⊲⊳
𝑛
B

A1 → A2 ⊲⊳
𝑛
B

LU-down

A1 ⊲⊳
𝑛
B

A1 → A2 ⊲⊳
𝑛
B

LU-left

A1 ⊲⊳
𝑛
B

A1 &A2 ⊲⊳
𝑛
B

LU-right

A2 ⊲⊳
𝑛
B

A1 &A2 ⊲⊳
𝑛
B

Fig. 17. An over-approximation of mp-loop sequences

B ↬↬
A
B ′

Sequences of mp-loops

LMT-base

B ↬
A
B ′

B ↬↬
A
B ′

LMT-cons

B ↬
A
B1 B1 ↬↬

A
B2

B ↬↬
A
B2

Fig. 18. Sequences of mp-loops, formalized

in the auxiliary type generator family. Similarly, given 𝑛, 𝐴 and 𝐵, the left premise of the two

remaining rules contributes by a finite factor on the number of elements that each of those rules can

produce. In particular, the A1 and B1 types in the conclusion of rules SBx-more1 and SBx-more2,

respectively, are produced by the look-up relation family (on the left premise of the corresponding

rule) and thus they can only be finite in number. Yet, we are left with the possibility to choose

arrow types of unconstrained size for the A2’s and B2’s of those two rules. At first sight, we can

have countably infinite choices for the right hand side component of this family relation.

Fortunately, the following lemma limits the size of the arrow types that can be chosen. It expresses

that given a natural number index 𝑛 and types A and B , if 𝑛 is greater than the range of both types,

then there is no type B ′
such that B

A
⊲⊳
𝑛
B ′

. The range LAM of a type A, defined in Figure 19 is a

function in the role of a norm for types.
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LNatM = LtopM = 0

LA1 → A2M = max(LA1M, LA2M + 1)
LA1 &A2M = max(LA1M, LA2M)

Fig. 19. The range of a type

A ⊲⊳
𝑛
A1

A ⊲⊳
𝑛+1

A2

B
A
⊲⊳
𝑛+𝑘

𝐵′
𝑘+1

·········

B
A
⊲⊳
𝑛+1

B ′
2 → · · · → 𝐵′

𝑘+1

B
A
⊲⊳
𝑛
B ′

1 → · · · → 𝐵′
𝑘+1

Fig. 20. Example derivation

Lemma G.5. If𝑚𝑎𝑥 (LAM, LBM) < 𝑛, then B
A
⊲⊳
𝑛
B ′ does not hold for any type B ′.

This lemma does not directly limit the choices for B ′
to a finite number, because it does not

impose any constraint on the B ′
component of the auxiliary type generator family. Rather, it

constrains 𝑛 to be necessarily less than or equal to the range of at least one of the two given types.

However, specializing B ′
to be an arrow type, since we are interested in applications of rules

SBx-more1 and SBx-more2, note that these two rules increase the natural number index of the

auxiliary type generator relation in their right premise. As exemplified by the derivation in Figure 20,

the size of the arrow type B ′
is limited so that if its derivation contains a branch with 𝑘 applications

of those two rules, then 𝑛 + 𝑘 ≤ max(LAM, LBM).
With this, we can conclude that given 𝑛, 𝐴 and 𝐵, rules SBx-more1 and SBx-more2 generate a

finite number of elements in the auxiliary type generator relation. Altogether, given 𝑛, A and B ,

the set {𝐵′ | B A
⊲⊳
𝑛
B ′} is finite.

Finally, the finiteness result about the type generator family, or to say, about the over-approximation

of the algorithm’s possible mp-loop sequences, follows directly: given types A and B , the set

{𝐵′ | B A
⊲⊳ B ′} is finite. □
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