
No Unification Variable Left Behind: Fully1

Grounding Type Inference for the HDM System2

Roger Bosman #3

KU Leuven, Belgium4

Georgios Karachalias #5

Tweag, France6

Tom Schrijvers #7

KU Leuven, Belgium8

Abstract9

The Hindley-Damas-Milner (HDM) system provides polymorphism, a key feature of functional10

programming languages such as Haskell and OCaml. It does so through a type inference algorithm,11

whose soundness and completeness have been well-studied and proven both manually (on paper)12

and mechanically (in a proof assistant). Earlier research has focused on the problem of inferring the13

type of a top-level expression. Yet, in practice, we also may wish to infer the type of subexpressions,14

either for the sake of elaboration into an explicitly-typed target language, or for reporting those15

types back to the programmer. One key difference between these two problems is the treatment16

of underconstrained types: in the former, unification variables that do not affect the overall type17

need not be instantiated. However, in the latter, instantiating all unification variables is essential,18

because unification variables are internal to the algorithm and should not leak into the output.19

We present an algorithm for the HDM system that explicitly tracks the scope of all unification20

variables. In addition to solving the subexpression type reconstruction problem described above, it21

can be used as a basis for elaboration algorithms, including those that implement elaboration-based22

features such as type classes. The algorithm implements input and output contexts, as well as the23

novel concept of full contexts, which significantly simplifies the state-passing of traditional algorithms.24

The algorithm has been formalised and proven sound and complete using the Coq proof assistant.25

2012 ACM Subject Classification Software and its engineering → Formal software verification;26

Software and its engineering → Completeness; Software and its engineering → Consistency27

Keywords and phrases type inference, mechanization, let-polymorphism28

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.2629

Supplementary Material Software (Source Code): https://github.com/rogerbosman/hdm-fully-grounding30

Funding This work was partly funded by KU Leuven project C14/20/079#55685055.31

1 Introduction32

Classic unification-based type inference algorithms for the Hindley–Damas–Milner (HDM)33

system such as algorithm W [7] solve the type inference problem. That is, they determine34

whether programs that lack type signatures are well-typed or not, by assigning every subterm35

the most general type possible (an unconstrained unification variable) and solving any type36

constraints that arise. Programs are well-typed if and only if all constraints can be solved.37

However, depending on the setting, we would like to not only verify that a program is38

well-typed but also determine the type of every subterm. The canonical example of this39

is elaboration to System F [13, 19], but the problem arises in other settings as well. For40

example, to aid development, real-world implementations of programming languages often41

© Roger Bosman, Georgios Karachalias, and Tom Schrijvers;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 26; pp. 26:1–26:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:roger.bosman@kuleuven.be
https://orcid.org/0000-0002-6693-4653
mailto:georgios.karachalias@tweag.io
mailto:tom.schrijvers@kuleuven.be
https://orcid.org/0000-0001-8771-5559
https://doi.org/10.4230/LIPIcs.ITP.2023.26
https://github.com/rogerbosman/hdm-fully-grounding
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Fully Grounding Type Inference for the HDM System

allow developers to query the types of subterms, either via a REPL1 like GHCi [22] or in a42

GUI-based editor, for example by supporting [24, 17] the Language Server Protocol [4]. We43

name this the subterm type reconstruction problem.44

An important way the type inference and subterm type reconstruction problem differ is45

in how they treat underconstrained types (i.e. types with unconstrained parts). Consider the46

following program below.47

let x = (λf. unit) (λy. y) in . . .48

Observe that the type of y is not subject to any constraints: since λy.y is passed to a function49

that discards its argument and instead returns unit, it is never applied an argument, nor is50

its output used, either which would impose constraints. For type checking this unconstrained51

type is not a problem: the program is well-typed regardless of y’s type. However, this52

situation is problematic for subterm type reconstruction, because we need to provide types53

for both f and y. We may only output fully ground types; unification variables are internal to54

the algorithm and should not be returned. Thus, to ground these types, we must instantiate55

all remaining unification variables. Generally, there are two options: (1) to generalise over56

the remaining variables, or (2) to default them to an arbitrary type (e.g. Unit).57

(1) let x = Λa. (λf : a → a. unit) (λy : a. y) in . . .58

(2) let x = (λf : Unit → Unit. unit) (λy : Unit. y) in . . .59
60

Crucially, the type of the overall expression may not determine the instantiation, as type vari-61

ables may not occur in this type. Consider again the example above. Since (λf. unit) (λy. y)62

beta-reduces to unit, x’s type is Unit. Hence, the type of y does not occur in x’s type.63

Therefore, additional machinery is needed to keep track of unsolved unification variables and64

apply whichever grounding strategy has been chosen. While solutions to this problem are65

not necessarily complicated in practice, implementations are often ad hoc, making reasoning66

about their correctness hard.67

In this paper, we address this very issue. We present algorithm R, a fully grounding68

type inference algorithm for the HDM system. The algorithm explicitly tracks the scope of69

unification variables, which allows for fully grounding type inference, meaning we can infer70

fully ground types for all subexpressions. Since type grounding is internal to algorithm R, its71

correctness proof (which we have mechanised in the Coq proof assistant [23]) carries over to72

the grounding strategy as well. As far as we know, we are the first to mechanically formalize73

a type inference algorithm for the HDM system that includes type grounding.74

The algorithm utilizes in- and output contexts in the style of Dunfield and Krishnaswami75

[10] as well as a novel approach to unification, using a concept we dub full contexts. Here,76

contexts always contain all existing unification variables. Traditionally, inference algorithm77

thread through a substitution to reflect equalities found during unification in other branches78

of the derivation. With our approach, we avoid this threading: when an equality α := τ is79

found, α can immediately be substituted for τ in the current context. Since the context is80

full, no further occurrences of α exist, and the equality can be discharged in one go.81

In summary, the specific contributions of this paper are:82

This paper presents a new, fully grounding type inference algorithm R for ML-style83

polymorphism. The algorithm keeps track of all unification variables and their scope and84

uses the novel concept of full contexts to discharge all unifications in one go.85

1 Read–Eval–Print Loop

R. Bosman, G. Karachalias, and T. Schrijvers 26:3

Γ ⊢W e1 : τ, θ1

θ1Γ ⊢W e2 : τ2, θ2

a#θ2θ1Γ
θ3 = unify(θ2τ ∼ τ2 → a)
Γ ⊢W e1e2 : θ3a, θ3θ2θ1

W-App

Γ ⊢W e : τ, θ

a = fv(τ) \ fv(θΓ)
Γ ⊢W e : ∀a.τ, θ

W-Gen

Ψin ⊢ e1 : [A1]T ⊣ Ψ1

Ψ1; {[A1]T} ⊢ e2 : [A2]T1 ⊣ Ψ2; {[A′
1]T ′}

α̂#Ψ2; (A′
1, A2)

Ψ2; (A′
1, A2, α̂); {α̂} ⊢ T ′ ∼ T1 → α̂ ⊣ Ψout; Aout; {Tout}

Ψin ⊢ e1 e2 : [Aout]Tout ⊣ Ψout

App

Ψin ⊢ e : [A]T ⊣ Ψout

gen(T, A) = S

Ψin ⊢ e : S ⊣ Ψout

Gen

Figure 1 Application and generalisation of algorithm W (top) and algorithm R (bottom).

We have mechanised both algorithm R as well as its correctness proof in the Coq proof86

assistant. Since algorithm R is fully grounding, we are—to our knowledge—the first to87

mechanically prove the correctness of an inference algorithm that features grounding. We88

admit an axiom about unification (see Section 5.3) and about the declarative specification89

(see Section 6.3).90

2 Overview91

This section describes the difference between unification-based algorithms like algorithm W92

and our algorithm R. We first describe how algorithm W loses track of unconstrained type93

variables. We then propose our algorithm R, which explicitly tracks the scope of unification94

variables, and show how this information yields fully grounding type inference.95

Algorithm W96

Unification-based algorithms like algorithm W derive equality constraints at application sites97

e1 e2. Rule W-App of Figure 1 describes algorithm W in the case of applications.98

Let us apply this to the example (λf. unit) (λy. y) (shown in Section 1) under an empty99

context. First, we infer the type a1 → Unit for λf. unit. Then, we infer the type a2 → a2 for100

(λy. y). Both steps result in empty unifiers θ1, θ2. Then, with a3 fresh, we unify a1 → Unit101

with (a2 → a2) → a3, yielding θ = (a3 := Unit, a1 := a2 → a2). Finally, we return θ(a3),102

which equates to Unit. Since algorithm W only returns the function’s result type Unit, it103

loses track of free variables that only occur in the parameter’s type (i.e. a2). As a2 is no104

longer reachable, it will not be further constrained and will remain unsolved.105

Algorithm W’s generalisation logic, extracted as W-Gen2 in Figure 1, turns an expres-106

sion’s monotype into a type scheme. In our running example, since the monotype Unit does107

not contain any free variables, algorithm W generalises over the empty list, which simply108

yields the Unit type scheme. Observe in particular that the unsolved unification variable a2109

is not generalised over. Hence, the type for λy. y remains a2 → a2, but we do not know in110

which context a2 is defined, and whether or where it can be generalised.111

2 Normally, this logic would be incorporated as part of the rule for let expressions.

ITP 2023

26:4 Fully Grounding Type Inference for the HDM System

x Variables a Skolem type variables
Terms e ::= x | unit | λx.e | e1 e2 | let x = e1 in e2

Monotypes τ ::= a | Unit | τ1 → τ2
Type Schemes σ ::= τ | ∀a.σ

Scoping/Typing Context Γ ::= • | Γ; a | Γ; x : σ

Figure 2 Syntax of the Declarative Specification

Algorithm R112

Our algorithm solves this problem by not only inferring the type T of an expression but also113

a list of unification variables that are in scope for T. By “in scope” we mean those variables114

that are safe to generalise over. Note that this list need not be a superset or subset of the115

free unification variables of T. We denote unification variables as α̂ with A denoting a list of116

α̂. Furthermore, we use [A]T to denote the type T having A in scope.117

Algorithm R utilises in- and output contexts [10] as well as the notion of full contexts118

to avoid having to pass around unifiers θ. We postpone fully introducing algorithm R to119

Section 4.2. For now, we present an informal preview of the application of algorithm R to120

the same example as covered above, highlighting how algorithm R infers fully ground types,121

and showing the benefit of full contexts.122

For the application (λf. unit) (λy. y), in App, we first derive the type [α̂1](α̂1 → Unit)123

for λf. unit. Then, we infer the type [α̂2](α̂2 → α̂2) for λy. y. Here our notion of full124

contexts comes in: instead of deriving a unifier that needs to be applied to the type of125

λf. unit, we instead append [α̂1](α̂1 → Unit) to the input context of the inference on λy. y,126

and obtain a possibly further instantiated [A′
1]T ′ from the output context (as seen in rule127

App in Figure 1). Here, [A′
1]T ′ = [α̂1](α̂1 → Unit).128

With α̂3 fresh, we unify [α̂1](α̂1 → Unit) with [α̂3, α̂2]((α̂2 → α̂2) → α̂3). Again, we129

apply our notion of full contexts, appending all variables in scope for our to-be-unified130

types ([α̂3, α̂1, α̂2]) to the context, allowing us to retrieve a possibly further instantiated131

Aout from the output context. Here, Aout = [α̂2]. Furthermore, we append α̂3 once more,132

now occurring as a type instead of an in-scope unification variable. Since α̂3 enjoys any133

substitution occurring during unification, we obtain the possibly further instantiated Tout134

from the output context. Here, Tout = Unit. Finally, we return [α̂2]Unit. Observe that,135

even though we are dropping the argument type, we are not dropping the variables in136

scope of the argument type. Generalisation, as displayed in Gen, of type [α̂2]Unit is137

(almost) trivial.138

To conclude this section, we have shown that our algorithm R not only infers a type T,139

but also a list of type variables A in scope for T. This way it can infer a fully ground type140

for every subterm. The following sections formally introduce algorithm R.141

3 Declarative System142

Before we present our algorithm, we present the declarative system that serves as its143

specification. The declarative system is essentially the syntax-directed system of Clement et144

al. [6], with two changes. First, like System F [13, 19], we explicitly track type variables in145

an ordered context. Consequently, we only generalise over variables that occur at the end of146

the context (i.e., not occurring to the left of term variable bindings). The second change is a147

purely syntactic one: we have extracted generalisation into a separate judgment.148

R. Bosman, G. Karachalias, and T. Schrijvers 26:5

Γ ⊩mono e : τ Γ ⊩poly e : σ Term Typing

(x : σ) ∈ Γ Γ ⊩ σ ≥ τ

Γ ⊩mono x : τ
TmVar

Γ ⊩mono unit : Unit
TmUnit

Γ ⊩ty τ1

Γ; x : τ1 ⊩mono e : τ2

Γ ⊩mono λx.e : τ1 → τ2
TmAbs

Γ ⊩mono e1 : τ1 → τ2

Γ ⊩mono e2 : τ1

Γ ⊩mono e1 e2 : τ2
TmApp

Γ ⊩poly e1 : σ

Γ; x : σ ⊩mono e2 : τ

Γ ⊩mono (let x = e1 in e2) : τ
TmLet

a#Γ Γ; a ⊩mono e : τ

gen(τ, a) = σ

Γ ⊩poly e : σ
TmGen

Γ ⊩ty σ Type Well-formedness

a ∈ Γ
Γ ⊩ty a Γ ⊩ty Unit

Γ ⊩ty τ1 Γ ⊩ty τ2

Γ ⊩ty τ1 → τ2

Γ; a ⊩ty σ

Γ ⊩ty ∀a.σ

wf(Γ) Scoping/Typing Context Well-formedness

wf(Γ)
wf(Γ; •)

wf(Γ) a /∈ Γ
wf(Γ, a)

wf(Γ) Γ ⊩ty σ

wf(Γ; x : σ)

Γ ⊩ σ1 ≥ σ2 Type Subsumption

Γ ⊩ τ ≥ τ

a#Γ Γ; a ⊩ σ1 ≥ σ2

Γ ⊩ σ1 ≥ ∀a.σ2

Γ ⊩ty τ1 Γ ⊩ [τ1/a]σ ≥ τ2

Γ ⊩ ∀a.σ ≥ τ2

Figure 3 Typing of the Declarative Specification

3.1 Syntax149

Figure 2 displays the syntax of the declarative system. The terms and types are as given by150

Damas and Milner [7]. Terms consist of term variables, unit values, lambda abstractions,151

applications, and let-bindings. Type schemes are in Skolem normal form, consisting of a152

number of quantifiers in front of a monotype. Finally, contexts Γ track the scope of type and153

term variables that are in scope of an expression.154

3.2 Typing155

Figure 3 displays the typing rules of our declarative system. As stated, we have extracted156

the generalisation logic in a separate judgment, giving rise to both a monomorphic typing157

judgment Γ ⊩mono e : τ, and a polymorphic judgment Γ ⊩poly e : σ, the latter of which is158

exclusively used in the typing rule for let-bindings TmLet. Rule TmGen uses the auxiliary159

function gen(τ, a), which generalises the passed τ over the passed a in the usual way. The160

type- and context well-formedness judgments Γ ⊢ty σ and wf(Γ) are standard. Finally, rule161

TmVar uses type subsumption [7, 6] to instantiate a type scheme. Since subsumption is162

only used in this manner, we could have given it the signature Γ ⊩ σ ≥ τ and omitted the163

middle rule. Yet, the advantage of the subsumption rules in Figure 3 is that subsumption164

ITP 2023

26:6 Fully Grounding Type Inference for the HDM System

x Variables a Skolem type variables α̂ Existential type variables
Terms e ::= x | unit | λx.e | e1 e2 | let x = e1 in e2

Monotypes T ::= a | α̂ | Unit | T1 → T2
Type Schemes S ::= T | ∀a.S

Local Existential Context A ::= • | A, α̂

Scoping/Typing Context Ψ ::= • | Ψ; a | Ψ; A | Ψ; x : S | Ψ; {[A]S}
Type Equalities E ::= • | T1 ∼ T2, E

{S} .= {[•]S}

Figure 4 Syntax of Algorithm R

proofs can be done in multiple parts and combined using transitivity.165

4 Algorithmic System166

We now introduce algorithm R. We discuss its syntax, rules and unification algorithm.167

4.1 Syntax168

Figure 4 displays the syntax used by algorithm R. Observe that we now have two kinds169

of type variables: like our declarative system we have (Skolem) type variables representing170

types generalised over by a type scheme. We have added unification variables α̂, which we171

refer to as existential type variables. Like Skolem type variables they are placeholders which172

can be substituted for other types. Accordingly, monotypes T may now also take the form of173

an existential type variable.174

Contexts Ψ differ from their declarative counterparts in two significant ways. First,175

besides Skolem type variables, contexts also track the scope of existential type variables,176

similar to [10, 30]. However, unlike Skolem type variables, they are not simply appended as177

individual variables, but instead come in a list-like structure A. As unification may both178

split and solve existential type variables, reasoning about ranges of existential type variables179

traditionally [10] requires adding markers to the context. By putting them in a list we obtain180

the same reasoning power, without having to add explicit markers.181

Secondly, types with their list of existential variables in scope may live in the context as182

an invisible object {[A]S}. These invisible objects, when combined with input and output183

contexts, are the essence behind full contexts, which we already introduced in Section 2.184

These allow us to append As and Ss on the context in branches of the inference algorithm185

that normally would not have them in scope. Invisible objects are invisible to membership ∈,186

but visible to both substitution and fresh variable generation #.187

4.2 Inference algorithm188

Figure 5 shows the rules of algorithm R. Its main judgments feature in and output contexts,189

where the output context consists of the input context subjected to all unifications made190

in the derivation, which means sequences A may shrink or grow and substitutions may be191

made, but their basic structure is the same.192

Rule Var looks up a variable in the context, and instantiates polytype S to [A]T using193

instantiation, discussed below. Rule Unit is trivial.194

R. Bosman, G. Karachalias, and T. Schrijvers 26:7

Ψin ⊢ e : [A]T ⊣ Ψout Type Inference

(x : S) ∈ Ψ Ψ ⊢ S ≥ [A]T
Ψ ⊢ x : [A]T ⊣ Ψ

Var
Ψ ⊢ unit : [•]Unit ⊣ Ψ

Unit

α̂#Ψin

Ψin; α̂; x : α̂ ⊢ e : [A2]T2 ⊣ Ψout; A1; x : T1

Ψin ⊢ λx.e : [A1, A2](T1 → T2) ⊣ Ψout

Abs

Ψin ⊢ e1 : S ⊣ Ψ
Ψ; x : S ⊢ e2 : [A]T ⊣ Ψout; x : S′

Ψin ⊢ (let x = e1 in e2) : [A]T ⊣ Ψout

Let

Ψin ⊢ e1 : [A1]T ⊣ Ψ1 Ψ1; {[A1]T} ⊢ e2 : [A2]T1 ⊣ Ψ2; {[A′
1]T ′}

α̂#Ψ2; (A′
1, A2) Ψ2; (A′

1, A2, α̂); {α̂} ⊢ T ′ ∼ T1 → α̂ ⊣ Ψout; Aout; {Tout}
Ψin ⊢ e1 e2 : [Aout]Tout ⊣ Ψout

App

Ψin ⊢ e : S ⊣ Ψout Generalization

Ψin ⊢ e : [A]T ⊣ Ψout gen(T, A) = S

Ψin ⊢ e : S ⊣ Ψout

Gen

Ψ ⊢ty S Type Well-formedness

a ∈ Ψ
Ψ ⊢ty a

α̂ ∈ Ψ
Ψ ⊢ty α̂ Ψ ⊢ty Unit

Ψ ⊢ty T1 Ψ ⊢ty T2

Ψ ⊢ty T1 → T2

Ψ; a ⊢ty S

Ψ ⊢ty ∀a.S

wf(Ψ) Scoping/Typing Context Well-formedness

wf(Ψ)
wf(Ψ; •)

wf(Ψ) A#Ψ
wf(Ψ, A)

wf(Ψ) Ψ ⊢ty S

wf(Ψ; x : S)
wf(Ψ; A) Ψ; A ⊢ty T

wf(Ψ; {[A]T})

Ψ ⊢ S ≥ [A]T Polymorphic Type Instantiation

Ψ ⊢ T ≥ [•]T
InstMono

α̂#Ψ Ψ; (α̂) ⊢ [α̂/a]S ≥ [A]T
Ψ ⊢ ∀a.S ≥ [(α̂), A]T

InstPoly

Figure 5 Typing of Algorithm R

While Abs may visually look different from conventional abstraction typing rules, it195

follows the same approach, with added machinery to derive the list of existential type196

variables in scope. Term variable x is assigned a fresh existential variable α̂; this assignment197

is added to the context as well as (the singleton list) α̂. We utilize full contexts to let [α̂]α̂198

enjoy any unifications made during the recursive inference by appending them to the input199

context and obtaining the possibly further instantiated [A1]T1 from the output context.200

Rule App, as already discussed in Section 2, first infers a type [A1]T for e1. Inference201

proceeds on e2, with the input environment extended with [A1]T, by using an invisible object.202

By usage of this invisible object we ensure that we can safely extend the context with [A1]T,203

because it does not bring either A1 or T into scope. We now unify e1’s type with a function204

consisting of e2’s type as argument, and fresh variable α̂ as result. We do so under an205

environment extend with all existential variables in scope for both types being unified, as206

well as α̂, occurring as a type, instead of an in-scope variable. For this second occurrence of207

α̂ we again use an invisible object, which avoids us bringing α̂ into scope twice. We obtain208

ITP 2023

26:8 Fully Grounding Type Inference for the HDM System

the results from the unification’s output.209

Rule Gen, as already discussed in Section 2, is (almost) trivial: based on the recursive,210

monomorphic inference, we generalise T over A. Note that we do not derive a list of variables211

in scope of S: since we generalise over all existential variables in scope, this list would always212

be empty. Finally, we have rule Let, which first infers a polytype using Gen. Inference213

proceeds on e2, on which the output is based.214

Type Instantiation215

Type instantiation is of form Ψ ⊢ S ≥ [A]T, where context Ψ and polytype S are inputs, and216

the monomorphic instance T and list in scope A are outputs. Essentially, type instantiation217

takes a type of form ∀a
i
.T, removes all quantifiers, and generates a fresh existential type218

variable α̂i for each Skolem type variable ai, and returns [α̂i]([α̂i
/ai]T). For example, the219

fst projection of pairs instantiates to • ⊢ ∀a1.∀a2.(a1, a2) → a1 ≥ α̂1, α̂2 → α̂1.220

Well-formedness221

Type well-formedness for the algorithmic system is a moderate extension of the declarative222

one, adding a single rule that checks if existential type variables α̂ are in the context Ψ.223

Observe that, since objects are invisible to set membership ∈, {[α̂]Unit} ̸⊢ty α̂.224

Contexts are well-formed iff all contained existential type variables are unique and all225

contained types are well-formed w.r.t. the context to their left, with any A enclosed in an226

invisible object temporarily added to the context. The notation A#Ψ ensures not only227

that A is fresh w.r.t. Ψ, but also that all α̂ in A are fresh w.r.t. each other. Since objects228

are visible to freshness #, context {[α̂]Unit}; α̂ is ill-formed. Another interesting detail is229

that, while contexts Ψ may contain Skolem type variables a (and this is used to verify the230

well-formedness of types), well-formed contexts may not contain any Skolem type variables.231

4.3 Unification232

Figure 6 displays our unification algorithm. The judgment Ψin ⊢ E ⊣ Ψout unifies a list of233

constraints E of form T1 ∼ T2 under input context Ψin and produces an output context234

Ψout. It can be viewed as the transitive closure of the single-step unification judgment235

Ψ1 ⊢ E1 −→ Ψ2 ⊢ E2, restricted to those sequences that end in •.236

Hole Notation237

We use the syntax Ψ[α̂] to denote the context ΨL; (AL, α̂, AR); ΨR, where Ψ[] is the context238

ΨL; (AL, AR); ΨR. A multi-hole notation splits the context into more parts. For example,239

Ψ[α̂1][α̂2] means Ψ1; (A1, α̂1, A2, α̂2, A3); Ψ2 or Ψ1; (A1, α̂1, A2); Ψ2; (A3, α̂2, A4); Ψ3. Note240

that hole notation does not split invisible objects.241

Single-step Unification242

The single-step unification algorithm essentially is a subset of Zhao et al.’s [30], taking only243

the cases that apply. Rules 1 and 2 simply discharge already-solved constraints. Rule 3 splits244

constraints on function types. Rules 7 and 8 deal with constraints on two existential type245

variables. Since our contexts are ordered, we avoid existential type variables escaping their246

scope by always substituting away the rightmost variable. Rules 9 and 10 solve constraints247

with an existential variable on one side, and Unit on the other.248

R. Bosman, G. Karachalias, and T. Schrijvers 26:9

Ψin ⊢ E ⊣ Ψout Unification Algorithm

Ψ ⊢ • ⊣ Ψ
SolNil

Ψin ⊢ T1 ∼ T2, E −→ Ψ ⊢ E Ψ ⊢ E ⊣ Ψout

Ψin ⊢ T1 ∼ T2, E ⊣ Ψout

SolCons

Ψ1 ⊢ E1 −→ Ψ2 ⊢ E2 Unification Algorithm (Single-step)

Ψ ⊢ Unit ∼ Unit, E −→1 Ψ ⊢ E
Ψ ⊢ α̂ ∼ α̂, E −→2 Ψ ⊢ E

Ψ ⊢ (T1 → T2) ∼ (T3 → T4), E −→3 Ψ ⊢ T1 ∼ T3, T2 ∼ T4, E

Ψ[α̂] ⊢ α̂ ∼ (T1 → T2), E −→4 [α̂1 → α̂2/α̂](Ψ[α̂1, α̂2] ⊢ (α̂1 → α̂2) ∼ (T1 → T2), E)
where α̂ /∈ fv(T1 → T2) and α̂1, α̂2#Ψ[α̂]

Ψ[α̂] ⊢ (T1 → T2) ∼ α̂, E −→5 [α̂1 → α̂2/α̂](Ψ[α̂1, α̂2] ⊢ (T1 → T2) ∼ (α̂1 → α̂2), E)
where α̂ /∈ fv(T1 → T2) and α̂1, α̂2#Ψ[α̂]

Ψ[α̂1][α̂2] ⊢ α̂1 ∼ α̂2, E −→7 [α̂1/α̂2](Ψ[α̂1][] ⊢ E)
Ψ[α̂1][α̂2] ⊢ α̂2 ∼ α̂1, E −→8 [α̂1/α̂2](Ψ[α̂1][] ⊢ E)

Ψ[α̂] ⊢ α̂ ∼ Unit, E −→9 [Unit/α̂](Ψ ⊢ E)
Ψ[α̂] ⊢ Unit ∼ α̂, E −→10 [Unit/α̂](Ψ ⊢ E)

Figure 6 Unification Algorithm

Finally, rules 4 and 5 solve constraints with an existential variable α̂ on one side, and a249

function type T1 → T2 on the other. Because our contexts are ordered, and both T1 and T2250

may contain existential variables to the left of α̂, we do not directly unify α̂ := T1 → T2, but251

instead split α̂ into a function type α̂1 → α̂2, where α̂1 and α̂2 are fresh w.r.t. the context.252

This way, rules 7 and 8 may correctly determine which existential variable to eliminate.253

Because of our notion of full contexts, after substitution we can discharge the fact that254

α̂ := α̂1 → α̂2, since no other occurrences of α̂ exist. Finally, to ensure termination, we255

require α̂ does not occur in T1 → T2.256

5 Metatheory257

To reason about how declarative and algorithmic derivations relate, we first need a way of258

converting between them. We do so through context instantiation, which takes an algorithmic259

context and converts it to a declarative one. However, this instantiation leaves us with260

a problem: what to do about invisible objects? To make reasoning about the declarative261

system easier, we extend declarative contexts Γ with a rule for objects Γ; {[a]σ}, and assert262

we can rewrite these away.263

▶ Definition 1. Γ1 ≡a,x Γ2 ≜ (∀a, a ∈ Γ1 ⇐⇒ a ∈ Γ2) ∧ (∀(x : σ), (x : σ) ∈ Γ1 ⇐⇒ (x :264

σ) ∈ Γ2)265

▶ Lemma 2. If Γ1 ⊩mono e : τ and Γ1 ≡a,x Γ2, then Γ2 ⊩mono e : τ.266

5.1 Context instantiation267

Figure 7 shows simplified context instantiation rules, which implicitly coerce Ψs to Γs and268

allow for the appending of a and A. They are meant to convey the intuition; their actual269

full definition can be found in the supplementary materials.270

ITP 2023

26:10 Fully Grounding Type Inference for the HDM System

Ψ ⇝ Γ Context instantiation

Γ ⇝ Γ

Γ; a ⊢ty τ

Γ; a; [τ/α̂]A; Ψ ⇝ Γ′

Γ; (α̂; A); Ψ ⇝ Γ′

Γ; a1; a2 ⊢ty τ

Γ; {[a1; a2; A][τ/α̂]T}; Ψ ⇝ Γ′

Γ; {[a1; α̂; A]T}; Ψ ⇝ Γ′

Figure 7 Context instantiation

For existential type variables outside invisible objects, we choose a sequence of Skolem271

type variables a and a declarative type τ that is well-typed w.r.t. the already-instantiated272

context Γ to its left as well as the chosen sequence a. We proceed by replacing α̂ by a,273

and substituting τ for α̂ in the remaining, still-to-be instantiated Ψ to its right. For α̂’s in274

invisible objects the logic is similar, but the generated sequences A and substitutions stay275

local to the object itself.276

5.2 Soundness277

Using context instantiation, we can formulate the soundness of the algorithmic system. We278

want to show that, for every closed algorithmic derivation, any instantiation leads to a valid279

derivation in the declarative system.280

▶ Theorem 3 (Soundness of the algorithmic system). If • ⊢ e : [A]T ⊣ • then for all281

A; {T}⇝ {τ} we have that • ⊩mono e : τ.282

This formulation is too weak to prove directly. Instead, we prove a more general variant,283

from which soundness follows.284

▶ Lemma 4. Given wf(Ψin):285

1. If Ψin ⊢ e : [A]T ⊣ Ψout then for all Ψout; A; {T}⇝ Γ; {τ} we have that Γ ⊩mono e : τ.286

2. If Ψin ⊢ e : S ⊣ Ψout then for all Ψout; {S}⇝ Γ; {σ} we have that Γ ⊩poly e : σ.287

The proof proceeds by mutual induction on the monomorphic and polymorphic algorithmic288

typing judgments. As the given instantiation instantiates the output context, we reason289

backwards through the algorithm. As a consequence, for rules App and Gen that have290

multiple recursive hypotheses, to invoke the induction hypotheses the second time we must291

produce an instantiation of the intermediate context from the instantiation of the output292

context. To allow for this, we have proven several lemmas about the backwards preservation293

of instantiation.294

▶ Lemma 5. Both typing judgments and unification preserve instantiation. That is:295

1. If Ψin ⊢ e : [A]T ⊣ Ψout and Ψout ⇝ Γ, then Ψin ⇝ Γ.296

2. If Ψin ⊢ e : S ⊣ Ψout and Ψout ⇝ Γ, then Ψin ⇝ Γ.297

3. If Ψin ⊢ E ⊣ Ψout and Ψout ⇝ Γ, then Ψin ⇝ Γ.298

5.3 Completeness299

Completeness states that, for any declarative derivation, there exists an algorithmic derivation300

that instantiates to it.301

▶ Theorem 6 (Completeness of the algorithmic system). For each declarative derivation there302

exists an algorithmic derivation that instantiates to it. That is,303

1. If • ⊩mono e : τ then there exists A T such that A; {T}⇝ {τ} and • ⊢ e : [A]T ⊣ •.304

R. Bosman, G. Karachalias, and T. Schrijvers 26:11

2. If • ⊩poly e : σ then there exists σ′ such that • ⊢ e : σ′ ⊣ • and ⊩ σ′ ≥ σ.305

Observe that (2) from Theorem 6 asserts that a polytype σ′ not containing any existential306

type variables is inferred. In other words, σ′ is fully ground. Again, we proceed by proving a307

more general lemma.308

▶ Lemma 7. Given wf(Ψin):309

1. If Γ ⊩mono e : τ, Ψ′ ≦a,x Γ, and there exists an Ain such that Ψin; Ain ⇝ Ψ′, then310

Ψin ⊢ e : [A]T ⊣ Ψout and Ψout; A; {T}⇝ Ψ′; {τ}.311

2. If Γ ⊩poly e : σ, Ψ′ ≦a,x Γ, and there exists an Ain such that Ψin; Ain ⇝ Ψ′, then312

Ψin ⊢ e : S ⊣ Ψout, Ψout; {S}⇝ Ψ′; {σ′}, and Ψ′ ⊩ σ′ ≥ σ.313

Here, Γ1 ≦a,x Γ2 iff two conditions hold. First, the contexts must contain the same type314

variables in the same order. Second, their term bindings (x : S) must (1) bind the same315

names in the same order to (2) types that are related by subsumption under Γ1.316

Finally, we admit the following property about unification:317

▶ Axiom 8. If a unifier exists, unification succeeds. That is, if θT1 = θT2 and Ψin ⇝ Γ then318

there exists Ψout such that Ψin ⊢ T1 ∼ T2 ⊣ Ψout and Ψout ⇝ Γ.319

5.4 Decidability320

In our algorithm there is only one part of which decidability is not obvious: unification.321

Hence, we prove its decidability here.322

▶ Theorem 9 (Decidability of unification). Given ∀T1T2. T1 ∼ T2 ∈ E =⇒ (Ψin ⊢ty T1323

∧ Ψin ⊢ty T2), it is decidable whether there exists a Ψout such that Ψin ⊢ E ⊣ Ψout.324

The proof proceeds by induction on the lexicographic measure ⟨|Ψin|
α̂

, |E | + 2 ∗ |E |→⟩,325

representing the number of existential type variables in Ψin and the length and number of326

function arrows in E , respectively. All rules directly reduce this measure, except for rules327

4 and 5. For these, we need an additional lemma, from which these cases follow. Let us328

categorize lists of constraints where one side is an existential type variable that does not329

occur in the rest of the list as Ei, and assert that we can solve any head of pattern Ei without330

increasing the length of the tail.331

Ei ::= •
| α̂ ∼ T, Ei with α̂ ̸∈ Ei

| T ∼ α̂, Ei with α̂ ̸∈ Ei

332

333

▶ Lemma 10 (Solving Ei). For all Ψin Ei E there exist Ψout E ′ such that Ψin ⊢ Ei + E −→∗
334

Ψout ⊢ E ′ and |Ψout|α̂ = |Ψin|
α̂

− |Ei|.335

Proof. By induction on ⟨|Ei| + 2 ∗ |Ei|→⟩. Rules 1, 9 and 10 do not apply. The rest336

directly reduce the measure, except for (again) rules 4 and 5. We consider rule 4, where337

Ei = α̂ ∼ (T1 → T2), E ′
i . It must be immediately followed by rule 3, which gives us338

Ψin[α̂] ⊢ α̂ ∼ (T1 → T2), Ei, E −→∗ [α̂1 → α̂2]Ψin[α̂1, α̂2] ⊢ α̂1 ∼ T1, α̂2 ∼ T2, Ei, E . Be-339

cause we know α̂ ̸∈ E ′
i , we know any substitution of α̂ on Ei does not increase |Ei|→. Even340

though we have added an existential variable, we end up with a decreased measure because341

we have eliminated an arrow, which counts for two. ◀342

ITP 2023

26:12 Fully Grounding Type Inference for the HDM System

6 Mechanization343

We have mechanised both the declarative specification presented in Section 3 as well as344

the algorithmic system presented in Section 4 in the Coq proof assistant [23]. Furthermore,345

we have proven the algorithmic system sound and correct w.r.t. the declarative speciation346

following the approach described in Section 5. The mechanization is implemented by347

generating definitions with Ott [20] and its backend [29] for the locally nameless representation348

[2, 5, 15]. To reason about the locally nameless representation, we have generated many349

useful lemmas with LNgen [1]. The mechanisation consists of ±700 handwritten lines of Ott350

DSL, ±10 000 lines of handwritten Coq code, ±900 lines of Coq code generated by Ott, and351

±6 800 lines of Coq code generated by LNgen.352

We start this section with a discussion of these tools and the locally nameless representa-353

tion. Then, we discuss the major points of difference between what is presented in the paper354

and the formalization. The mechanisation as well as an exhaustive list of the delta between355

the paper and the mechanization are available in the supplementary material, as well as at356

https://github.com/rogerbosman/hdm-fully-grounding.357

6.1 Ott358

Our mechanization uses the Sewel et al.’s Ott [20] DSL to express both the syntax and359

inference rules in this paper and generate corresponding (LATEX and) Coq definitions, as well360

as boilerplate definitions such as substitutions and free variable functions. As Sewell et al.361

already argue the general benefits of Ott, here we focus only on the aspects that we found362

particularly useful.363

Typically, manually written LATEX specifications make notational liberties that do not364

translate well to Coq. For example, we have taken such a liberty in the environment365

instantiation judgment as discussed in Section 5.1. Ott rejects such ill-typed definitions.366

Hence, it forces well-typed formulations that can be translated to Coq, but are more verbose367

in LATEX. As a compromise, we have stuck to the Ott-generated LATEX during the development368

and have manually produced a cleaned-up version for this paper.3369

A clear advantage of the Ott-generated outputs is that they both have the same single370

source of truth. Thus, the LATEX output can be used to reason about the Coq output.371

Another substantial advantage is that Ott takes care of generating boilerplate definitions372

such as free variable functions and substitutions.373

6.2 The locally nameless representation374

Formalizations that contain abstraction must represent variables in some way. Typically,375

variables are either referred to by explicit name—which suffers from the lack of built-in376

α-equivalence, and have issues such as shadowing—or a nameless representation such as De377

Bruijn indices [8], which are sensitive to the context in which they are defined, requiring378

shifting operations whenever such changes occur.379

The locally nameless representation combines the two approaches: it uses a named rep-380

resentation for free variables, and a nameless representation for locally bound variables. As a381

consequence, each alpha-equivalence class of closed lambda terms has a unique representation.382

At the same time, terms are less sensitive to changes in their context. For example, the383

lambda expression λx. x y is represented as λ. 0y, because x is locally bound, while y is384

3 We describe the difference in Section 6.4.

https://github.com/rogerbosman/hdm-fully-grounding

R. Bosman, G. Karachalias, and T. Schrijvers 26:13

free. This implies a well-formedness condition, namely that every nameless variable has385

a corresponding abstraction, in other words, that nameless variables are not free. This386

condition is called locally closed.387

A locally bound variable can be converted to a named, free variable through opening,388

where any reference to the outermost abstraction is replaced by a named variable. We use ex
389

to denote opening term e with name x. It’s dual is closing. We use \xe to denote closing e390

w.r.t. x. Our mechanization uses the locally nameless representation for both the declarative391

and algorithmic term variables x and for the Skolem type variables a. Since existential type392

variables α̂ do not have a matching abstraction, they are always free, and thus use the named393

representation.394

Cofinite Quantification395

To preserve the locally closed property, whenever we go under a binder, we have to open the
term with some named variable quantified over in some way. There are several ways to go
about this. One way would be to use existential quantification, where we assert that there
exists some name not in the free variables of the term being opened. Consider rule ∀Wf-Ex
below, which applies this principle to the well-formedness of declarative type schemes.

∃a.(a ̸∈ fv(σ) ∪ fv(Γ) Γ; a ⊢ty σa)
Γ ⊢ty ∀.σ

∀Wf-Ex
∃L.∀a.a ̸∈ L. Γ; a ⊢ty σa

Γ ⊢ty ∀.σ
∀Wf-Cof

As described by Aydemir et al. [2], existential quantification is weak as an elimination form.396

For example, since eliminating this rule only gives well-formedness for one particular name,397

renaming lemmas are required for deriving well-formedness over any other name.398

Universal quantification suffers from the opposite problem: it can be cumbersome to399

prove the well-formedness of any variable satisfying the freshness constaints. In particular,400

sometimes we want to exclude more variables than just those in fv(σ) ∪ fv(Γ).401

Cofinite quantification, as displayed by rule ∀Wf-Cof above, offers exactly this. Here,402

we quantify universally over any name not in some existentially quantified set L. This403

elimination form is much stronger than with existential quantification, because we know404

well-formedness to hold for any a ̸∈ L, instead of just one, avoiding, in general, the need for405

renaming lemmas. Yet, as an introduction form, it is much easier to use than with universal406

quantification, because it allows us to exclude finitely many names, instead of just the fixed407

set of free variables. While cofinite quantification is not free of quirks (particularly the control408

flow of quantification), which we describe below, in general, it strikes the best balance.409

Ott’s Locally Nameless Backend & LNgen410

One drawback of cofinite quantification is that implementation details of the variable411

representation leak to the LATEX inference rules. Here, Ott’s locally nameless backend412

[29] comes in handy: it automatically converts inference rules as specified in Sections 3 and 4413

to those that use a (cofinitely quantified) locally nameless presentation for Coq only. The414

LATEX definitions render as the original specification.415

By default, Ott’s locally nameless backend generates definitions for opening terms, but416

not for closing them. Weirich’s Ott fork [27] adds the generation of these closing definitions.417

The opening and closing operations are subject to various laws. One of these, which will418

become relevant later, is the following.419

▶ Proposition 11 (Subsitution as Open and Close). Subsitution can be defined in terms of420

open and close. That is, [T/a]S = (\aS)T .421

ITP 2023

26:14 Fully Grounding Type Inference for the HDM System

Proposition 11 as well as many others are automatically generated and proven by LNgen [1],422

which bases itself on the Ott specification. Our mechanization uses these laws extensively.423

6.3 Quirks of the locally nameless representation424

As with any variable representation, some quirks arise. We cover three here.425

Generalisation426

First is the gen function used in Gen in Figure 5, and its definition4 is displayed below.427

gen(S, • , _) = S

gen(S,(A; α̂), L) = let S′ = gen(S, A, L), a#fv(S′) ∪ L

in ∀.\a([a/α̂] S′)
428

Since variable closing closes nameless Skolem type variables a only, we first substitute in a429

freshly generated one, only to close it away immediately after. While it would be possible to430

manually define a closing operation that replaces (named) existential type variables with431

unnamed Skolem type variables, we would lose the ability to reason over them with the432

laws generated by LNgen. While we cannot completely avoid having to manually replicate433

some of these in some instances, here we can avoid doing so. Fortunately, because of these434

same LN-generated laws, reasoning about this is straightforward. If we open the generalised435

term with some T, we get (\a([a/α̂] S′))T . By Proposition 11, this can be rewritten into436

[T/a][a/α̂] S′, which simplifies to [T/α̂] S′.437

Lists of variables438

Rule TmGen in Figure 2 quantifies over a list of variables a. Quantifying cofinitely over439

and opening with a list of type variables instead of a singular variable requires additional440

machinery and is not supported by Ott. Attempts at patching the generated definitions441

manually were unsuccessful (we discuss this again in Section 8). As a consequence, the list442

of variables a is quantified existentially, which is why we used an axiom in our proof of the443

weakening lemma for declarative typing judgments.444

Control Flow445

When inducting over typing derivations, we have existentially quantified sets of variables446

L, and universally quantified variables fresh w.r.t. L. Sets L flow downwards from the447

induction hypothesis to the conclusion. Yet, variables flow upwards from the conclusion to448

the induction hypothesis. Consider the abstraction case for completeness, which essentially449

consists of proving the following implication.450

(∃L.∀x.x /∈ L =⇒ ∃ Ψout A T2. Ψin; [α̂]; x : α̂ ⊢ ex : [A2]T2 ⊣ Ψout; A1; x : T1
∧ Ψout; A1; x : T1; A2; {T2}⇝ Γ; x : τ1; {τ2})

=⇒ Ψin ⊢ λ.e : [A1; A2]T1 → T2 ⊣ Ψout ∧ Ψout; A1; A2; {T1 → T2}⇝ Γ; {τ1 → τ2}
451

4 Observe that gen is parametrised with a third argument, unspecified in Gen, which is included in the
set w.r.t. fresh variables are generated, i.e. a#fv(S′) ∪ L. Since fresh variables are immediately closed
away, the generalised term is not affected by a choice for L. It is helpful proving the commutativity of
generalisation with for example substitution of existential type variables.

R. Bosman, G. Karachalias, and T. Schrijvers 26:15

There is a problem here. Since we only obtain the term variable to open e with after applying452

the Abs constructor in the right branch of the conclusion, we do not have access to it in the453

left branch of the conclusion. Since the IH existentially quantifies objects that occur in both454

branches of the conclusion, we cannot simply apply the IH twice, once per branch. While455

the IH can probably be strengthened to shift the ∀x to each of its two branches, we found it456

easier to apply the IH to a sufficiently fresh variable before splitting the conclusion. This457

leaves us with a typing derivation opened with a different term than required. However, this458

can be remedied straightforwardly with the following renaming lemma.459

▶ Lemma 12. Ψin ⊢ e : [A]T ⊣ Ψout =⇒ [y/x]Ψin ⊢ [y/x]e : [A]T ⊣ [y/x]Ψout460

6.4 Delta between the paper and the mechanization461

We cover the two most important differences between the system as presented in this paper462

and the mechanization.463

Unification464

To facilitate easier reasoning over unification, the mechanisation’s single-step unification465

judgment rules do not apply the substitution directly, but instead output the substitution466

as a third output, giving unification the form Ψ1 ⊢ E1 −→ Ψ2 ⊢ E2, γ, where γ has form467

[T/α̂]. Note that single steps return either the empty list, or a singleton list. The auxiliary468

judgment Ψin ⊢ E ⊣ Ψout, γ takes the substitution generated by the single-step judgment,469

applies it to the step’s result (yielding the same result as the paper’s single-step judgment),470

and then combines it with the inductive result. Finally, Ψin ⊢ E ⊣ Ψout is defined in terms471

of this auxiliary judgment by simply discarding the substitution.472

Context Instantiation473

The instantiation as presented in Section 5.1 contains notation that is not properly translatable474

to an inductive type. We present instantiation in this manner to obtain a simpler overview475

of the logic of context instantiation. The instantiation in the mechanization can be obtained476

by applying the following three transformations.477

First, instead of concatenating the already-processed Γ with the yet-to-be processed Ψ,478

we define instantiation inductively on Ψ, where we pattern match on the different heads of479

Ψ, process the tail, and then add the processed head. This means that when generating480

a substitution for an existential type variable α̂ we do not have access to the yet-to-be481

processed Ψ, since now α̂ is at the head. Therefore, we flip the control flow, instead deriving482

a substitution θ of form [τ/α̂], and apply it to any bound type later. This yields a signature483

of Γ ⇝ Ψ, θ.484

Then we split out the instantiation of A’s in a dedicated judgment, A ⇝ a, θ. Finally, to485

make it easier to reason about instantiation, we add a context Γin, θin such that the following486

holds.487

▶ Theorem 13 (Splitting and merging context instantiation). Context instantiation judgments488

can be split and merged. That is:489

Γin, θin ⊢ Ψ1; Ψ2 ⇝ Γ, θ =⇒ ∃ Γ1 Γ2 θ1 θ2, Γ = Γ1; Γ2 ∧ θ = θ2; θ1490

∧ Γin, θin ⊢ Ψ1 ⇝ Γ1, θ1 ∧ Γin; Γ1, θ1; θin ⊢ Ψ2 ⇝ Γ2, θ2.491

Γin, θin ⊢ Ψ1 ⇝ Γ1, θ1 ∧ Γin; Γ1, θ1; θin ⊢ Ψ2 ⇝ Γ2, θ2 =⇒492

Γin, θin ⊢ Ψ1; Ψ2 ⇝ Γ1; Γ2, θ2; θ2.493

ITP 2023

26:16 Fully Grounding Type Inference for the HDM System

7 Related Work494

The algorithm presented in this paper extends a long line of work on the inference of the495

HDM system [9, 16, 12, 14]. Yet, a surprisingly small amount of work addresses the issue of496

underconstrained type variables.497

Pottier [18] gives an (not formalised) elaboration algorithm which inspects the accumulated498

constraints to determine the list of variables in scope of types. In the appendix, they499

identify the problem of potentially unnecessary quantification. They address this with a500

non-deterministic specification that “magically” chooses which variables to abstract over.501

Vytiniotis et al. advocate [25] removing the generalisation of lets altogether, citing un-502

wanted interactions and needless complexity in context of generalising types with constraints503

arising from, for example, type classes or GADTs [28]. They observe that removing let504

generalisation would not be a significant restriction, since most programs do not utilize505

this functionality. Yet, removing let generalisation would not address the problem of un-506

derconstrained types: they would still need to be dealt with, only now by defaulting, since507

generalisation is no longer an option.508

Zhao et al. mechanised [30] an algorithm for Dunfield and Krishnaswami’s [10] type509

system featuring higher-rank polymorphism. However, since these systems are bidirectional,510

it is left to the programmer to decide which type variable should be generalised over where,511

if at all. Yet, we have taken a great deal of inspiration from both these works, adopting the512

in- and output contexts from Dunfield and Krishnaswami, and manner of tracking existential513

type variables and approach to unification from Zhao et al.514

Zhao et al. rewrote Dunfield and Krishnaswami’s algorithmic system, citing the lack of515

support by their proof assistant of choice (Abella [11]) as one of their reasons. Since we are516

not using any built-in variable binding support (like what is supported by Abella), we did517

not encounter such limitations. Thus, we were able to maintain the tree-like structure of518

Dunfield and Krishnaswami instead of the flatter, list-based approach of Zhao et al.519

8 Conclusion520

In this paper we have presented algorithm R: the first mechanically verified, fully grounding521

type inference algorithm for the HDM system. The contribution features the novel approach522

to unification by using full contexts, in which the current context always represents the523

entire context. The algorithm lays the foundation for formalizing algorithms that require524

determining types for every subterm.525

While any variable representation will have its quirks, the quirks of locally nameless as526

discussed in Section 6.3 make us wonder if a fully nameless representation would be easier527

to work with. Our design choice of a separate judgment for generalisation did not turn528

out well. This approach requires mutual induction on the monomorphic and polymorphic529

typing judgments, which is a nuisance. Furthermore, Coq not being able to generate this530

mutual induction scheme is what left us unable to manually patch the inference rule for531

generalisation to quantify the list of variables a cofinitely, as discussed in Section 6.3.532

One particularly interesting future area of work is the extension of the algorithm with elab-533

oration to an explicitly typed language like System F, potentially extended with elaboration-534

based features such as Go’s structural subtyping system [21] or type classes [26], whose535

coherence has been proven on paper in a bidirectional setting [3], but—as far as we know—not536

yet in the HDM system. Since formalizing these algorithms requires reasoning about the537

scope of existential variables, our work should serve as a solid starting point.538

R. Bosman, G. Karachalias, and T. Schrijvers 26:17

Acknowledgements539

We would like to thank Steven Keuchel for their help and insights about Coq, and their540

comments about a draft of this paper.541

References542

1 Brian Aydemir and Stephanie Weirich. LNgen: Tool support for locally nameless represent-543

ations. Technical report, Department of Computer and Information Science, University of544

Pennsylvania, 2010.545

2 Brian E. Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie546

Weirich. Engineering formal metatheory. In George C. Necula and Philip Wadler, editors,547

Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming548

Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008, pages 3–15.549

ACM, 2008. doi:10.1145/1328438.1328443.550

3 Gert-Jan Bottu, Ningning Xie, Koar Marntirosian, and Tom Schrijvers. Coherence of type class551

resolution. Proc. ACM Program. Lang., 3(ICFP):91:1–91:28, 2019. doi:10.1145/3341695.552

4 Hendrik Bünder. Decoupling language and editor - the impact of the language server protocol553

on textual domain-specific languages. In Slimane Hammoudi, Luís Ferreira Pires, and Bran554

Selic, editors, Proceedings of the 7th International Conference on Model-Driven Engineering555

and Software Development, MODELSWARD 2019, Prague, Czech Republic, February 20-22,556

2019, pages 129–140. SciTePress, 2019. doi:10.5220/0007556301310142.557

5 Arthur Charguéraud. The locally nameless representation. J. Autom. Reason., 49(3):363–408,558

2012. doi:10.1007/s10817-011-9225-2.559

6 Dominique Clément, Joëlle Despeyroux, Th. Despeyroux, and Gilles Kahn. A simple applicative560

language: Mini-ml. In William L. Scherlis, John H. Williams, and Richard P. Gabriel,561

editors, Proceedings of the 1986 ACM Conference on LISP and Functional Programming,562

LFP 1986, Cambridge, Massachusetts, USA, August 4-6, 1986, pages 13–27. ACM, 1986.563

doi:10.1145/319838.319847.564

7 Luís Damas and Robin Milner. Principal type-schemes for functional programs. In Richard A.565

DeMillo, editor, Conference Record of the Ninth Annual ACM Symposium on Principles of566

Programming Languages, Albuquerque, New Mexico, USA, January 1982, pages 207–212. ACM567

Press, 1982. doi:10.1145/582153.582176.568

8 N.G de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic569

formula manipulation, with application to the church-rosser theorem. Indagationes Mathem-570

aticae (Proceedings), 75(5):381–392, 1972. URL: https://www.sciencedirect.com/science/571

article/pii/1385725872900340, doi:https://doi.org/10.1016/1385-7258(72)90034-0.572

9 Catherine Dubois and Valérie Ménissier-Morain. Certification of a type inference tool for573

ML: damas-milner within coq. J. Autom. Reason., 23(3-4):319–346, 1999. doi:10.1023/A:574

1006285817788.575

10 Jana Dunfield and Neelakantan R. Krishnaswami. Complete and easy bidirectional typechecking576

for higher-rank polymorphism. In Greg Morrisett and Tarmo Uustalu, editors, ACM SIGPLAN577

International Conference on Functional Programming, ICFP’13, Boston, MA, USA - September578

25 - 27, 2013, pages 429–442. ACM, 2013. doi:10.1145/2500365.2500582.579

11 Andrew Gacek. The abella interactive theorem prover (system description). In Alessandro580

Armando, Peter Baumgartner, and Gilles Dowek, editors, Automated Reasoning, 4th Inter-581

national Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008, Proceed-582

ings, volume 5195 of Lecture Notes in Computer Science, pages 154–161. Springer, 2008.583

doi:10.1007/978-3-540-71070-7_13.584

12 Jacques Garrigue. A certified implementation of ML with structural polymorphism and recurs-585

ive types. Math. Struct. Comput. Sci., 25(4):867–891, 2015. doi:10.1017/S0960129513000066.586

13 Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique587

d’ordre supérieur. PhD thesis, Éditeur inconnu, 1972.588

ITP 2023

https://doi.org/10.1145/1328438.1328443
https://doi.org/10.1145/3341695
https://doi.org/10.5220/0007556301310142
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1145/319838.319847
https://doi.org/10.1145/582153.582176
https://www.sciencedirect.com/science/article/pii/1385725872900340
https://www.sciencedirect.com/science/article/pii/1385725872900340
https://www.sciencedirect.com/science/article/pii/1385725872900340
https://doi.org/https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1023/A:1006285817788
https://doi.org/10.1023/A:1006285817788
https://doi.org/10.1023/A:1006285817788
https://doi.org/10.1145/2500365.2500582
https://doi.org/10.1007/978-3-540-71070-7_13
https://doi.org/10.1017/S0960129513000066

26:18 Fully Grounding Type Inference for the HDM System

14 Adam Gundry, Conor McBride, and James McKinna. Type inference in context. In Venanzio589

Capretta and James Chapman, editors, Proceedings of the 3rd ACM SIGPLAN Workshop590

on Mathematically Structured Functional Programming, MSFP@ICFP 2010, Baltimore, MD,591

USA, September 25, 2010, pages 43–54. ACM, 2010. doi:10.1145/1863597.1863608.592

15 Conor McBride and James McKinna. Functional pearl: i am not a number-i am a free593

variable. In Henrik Nilsson, editor, Proceedings of the ACM SIGPLAN Workshop on Haskell,594

Haskell 2004, Snowbird, UT, USA, September 22-22, 2004, pages 1–9. ACM, 2004. doi:595

10.1145/1017472.1017477.596

16 Wolfgang Naraschewski and Tobias Nipkow. Type inference verified: Algorithm W in isa-597

belle/hol. J. Autom. Reason., 23(3-4):299–318, 1999. doi:10.1023/A:1006277616879.598

17 Andrey Popp, Rusty Key, Louis Roché, Oleksiy Golovko, Rudi Grinberg, Sacha Ayoun, cannorin,599

Ulugbek Abdullaev, Thibaut Mattio, and Max Lantas. ocaml-lsp-server 1.15.1-5.0 – opam, Jan600

2023. URL: https://opam.ocaml.org/packages/ocaml-lsp-server/ocaml-lsp-server.1.601

15.1-5.0/.602

18 François Pottier. Hindley-milner elaboration in applicative style: functional pearl. In Johan603

Jeuring and Manuel M. T. Chakravarty, editors, Proceedings of the 19th ACM SIGPLAN604

international conference on Functional programming, Gothenburg, Sweden, September 1-3,605

2014, pages 203–212. ACM, 2014. doi:10.1145/2628136.2628145.606

19 John C. Reynolds. Towards a theory of type structure. In Bernard J. Robinet, editor,607

Programming Symposium, Proceedings Colloque sur la Programmation, Paris, France, April608

9-11, 1974, volume 19 of Lecture Notes in Computer Science, pages 408–423. Springer, 1974.609

doi:10.1007/3-540-06859-7_148.610

20 Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Tom Ridge, Susmit611

Sarkar, and Rok Strnisa. Ott: effective tool support for the working semanticist. In Ralf612

Hinze and Norman Ramsey, editors, Proceedings of the 12th ACM SIGPLAN International613

Conference on Functional Programming, ICFP 2007, Freiburg, Germany, October 1-3, 2007,614

pages 1–12. ACM, 2007. doi:10.1145/1291151.1291155.615

21 Martin Sulzmann and Stefan Wehr. A dictionary-passing translation of featherweight go. In616

Hakjoo Oh, editor, Programming Languages and Systems - 19th Asian Symposium, APLAS617

2021, Chicago, IL, USA, October 17-18, 2021, Proceedings, volume 13008 of Lecture Notes in618

Computer Science, pages 102–120. Springer, 2021. doi:10.1007/978-3-030-89051-3_7.619

22 GHC Team. Using GHCi - GHC User’s Guide 9.4.4. URL: https://downloads.haskell.org/620

ghc/9.4.4/docs/users_guide/index.html.621

23 The Coq Development Team. The coq proof assistant, September 2022. doi:10.5281/zenodo.622

7313584.623

24 The Haskell IDE Team. haskell-language-server documentation. URL: https://624

haskell-language-server.readthedocs.io/en/latest/.625

25 Dimitrios Vytiniotis, Simon Peyton Jones, and Tom Schrijvers. Let should not be generalized.626

In Proceedings of the 5th ACM SIGPLAN Workshop on Types in Language Design and627

Implementation, TLDI ’10, page 39–50, New York, NY, USA, 2010. Association for Computing628

Machinery. doi:10.1145/1708016.1708023.629

26 Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-hoc. In630

Conference Record of the Sixteenth Annual ACM Symposium on Principles of Programming631

Languages, Austin, Texas, USA, January 11-13, 1989, pages 60–76. ACM Press, 1989. doi:632

10.1145/75277.75283.633

27 Stephanie Weirich. Github repository: sweirich/ott, Apr 2022. URL: https://github.com/634

sweirich/ott/tree/aa65f53ea0587223662aaad9c48cb0770549f018.635

28 Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype constructors. In Alex636

Aiken and Greg Morrisett, editors, Conference Record of POPL 2003: The 30th SIGPLAN-637

SIGACT Symposium on Principles of Programming Languages, New Orleans, Louisisana,638

USA, January 15-17, 2003, pages 224–235. ACM, 2003. doi:10.1145/604131.604150.639

https://doi.org/10.1145/1863597.1863608
https://doi.org/10.1145/1017472.1017477
https://doi.org/10.1145/1017472.1017477
https://doi.org/10.1145/1017472.1017477
https://doi.org/10.1023/A:1006277616879
https://opam.ocaml.org/packages/ocaml-lsp-server/ocaml-lsp-server.1.15.1-5.0/
https://opam.ocaml.org/packages/ocaml-lsp-server/ocaml-lsp-server.1.15.1-5.0/
https://opam.ocaml.org/packages/ocaml-lsp-server/ocaml-lsp-server.1.15.1-5.0/
https://doi.org/10.1145/2628136.2628145
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1145/1291151.1291155
https://doi.org/10.1007/978-3-030-89051-3_7
https://downloads.haskell.org/ghc/9.4.4/docs/users_guide/index.html
https://downloads.haskell.org/ghc/9.4.4/docs/users_guide/index.html
https://downloads.haskell.org/ghc/9.4.4/docs/users_guide/index.html
https://doi.org/10.5281/zenodo.7313584
https://doi.org/10.5281/zenodo.7313584
https://doi.org/10.5281/zenodo.7313584
https://haskell-language-server.readthedocs.io/en/latest/
https://haskell-language-server.readthedocs.io/en/latest/
https://haskell-language-server.readthedocs.io/en/latest/
https://doi.org/10.1145/1708016.1708023
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283
https://github.com/sweirich/ott/tree/aa65f53ea0587223662aaad9c48cb0770549f018
https://github.com/sweirich/ott/tree/aa65f53ea0587223662aaad9c48cb0770549f018
https://github.com/sweirich/ott/tree/aa65f53ea0587223662aaad9c48cb0770549f018
https://doi.org/10.1145/604131.604150

R. Bosman, G. Karachalias, and T. Schrijvers 26:19

29 Francesco Zappa Nardelli. A locally-nameless backend for ott, Mar 2009. URL: https:640

//fzn.fr/projects/ln_ott/.641

30 Jinxu Zhao, Bruno C. d. S. Oliveira, and Tom Schrijvers. A mechanical formalization of642

higher-ranked polymorphic type inference. Proc. ACM Program. Lang., 3(ICFP):112:1–112:29,643

2019. doi:10.1145/3341716.644

ITP 2023

https://fzn.fr/projects/ln_ott/
https://fzn.fr/projects/ln_ott/
https://fzn.fr/projects/ln_ott/
https://doi.org/10.1145/3341716

26:20 Fully Grounding Type Inference for the HDM System

A Exhaustive list of differences between the paper and the645

mechanization646

A.1 Additions647

We define freshness for a’s and A’s.648

Declarative and algorithmic gen functions are defined directly (as embed block in Hdm-649

Defs.ott, exports to HdmDefs.v).650

Metarule dealing with the well-formedness of a’s: WfDEnvDA.651

A.2 Changes652

Because Ott required us to specify type variables for the declarative system separately653

from the algorithmic one, we annotate type variables in the declarative system with654

a caret as well. Note that against the convention of the paper, they cannot contain655

existential type variables.656

Subsumption: the signature is Γ → σ → σ → P instead of Γ → σ → τ → P (but rules657

identical)658

Unification: as discussed659

Instantiation: as discussed660

Effects of locally nameless transformation:661

Conversion to nameless abstractions: e_Lam, e_Let, S_Forall, DS_Forall,662

e_Lam.663

DFrACons: quantifies cofinitely over a.664

MonAbs: quantifies cofinitely over x, recursive judgment over e opened with x.665

MonLet: quantifies cofinitely over x, recursive judgment over e2 opened with x.666

WfDTyAbs: quantifies cofinitely over a, recursive judgment over σ opened with a.667

SubSumpInst: quantifies cofinitely over a, recursive judgment over σ2 opened with a,668

and then immediately with τ1 substituted for a (effectively opening σ2 with T1).669

InfAbs: quantifies cofinitely over x, recursive judgment over e opened with x.670

InfLet: quantifies cofinitely over x, recursive judgment over e2 opened with x.671

InstPoly: quantifies cofinitely over a, recursive judgment over S opened with a, and672

then immediately with α̂ substituted for a (effectively opening S with α̂).673

WfTyAbs: quantifies cofinitely over a, recursive judgment over S opened with a.674

	1 Introduction
	2 Overview
	3 Declarative System
	3.1 Syntax
	3.2 Typing

	4 Algorithmic System
	4.1 Syntax
	4.2 Inference algorithm
	4.3 Unification

	5 Metatheory
	5.1 Context instantiation
	5.2 Soundness
	5.3 Completeness
	5.4 Decidability

	6 Mechanization
	6.1 Ott
	6.2 The locally nameless representation
	6.3 Quirks of the locally nameless representation
	6.4 Delta between the paper and the mechanization

	7 Related Work
	8 Conclusion
	A Exhaustive list of differences between the paper and the mechanization
	A.1 Additions
	A.2 Changes

