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Abstract
Functional dependencies are a popular extension to Haskell’s type-

class system because they provide fine-grained control over type

inference, resolve ambiguities and even enable type-level computa-

tions.

Unfortunately, several aspects of Haskell’s functional dependen-

cies are ill-understood. In particular, the GHC compiler does not

properly enforce the functional dependency property, and rejects

well-typed programs because it does not know how to elaborate

them into its core language, System FC.

This paper presents a novel formalization of functional dependen-

cies that addresses these issues: We explicitly capture the functional

dependency property in the type system, in the form of explicit

type equalities. We also provide a type inference algorithm and

an accompanying elaboration strategy which allows all well-typed

programs to be elaborated into System FC.
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1 Introduction
Type classes were originally introduced by Wadler and Blott [35]

to make ad-hoc overloading less ad hoc. They first became highly

successful in Haskell [20], were later adopted by other declarative

languages like Mercury [10] and Coq [19], and finally influenced

the design of similar features (e.g., concepts for C++ [8] and traits

for Rust [3, 27]).

The feature was quickly and naturally generalized from single-

parameter predicates over types to relations over multiple types.

Unfortunately, these so-called multi-parameter type classes easily
give rise to ambiguous situations where the combination of types

in the relation can, as a matter of principle, not be uniquely deter-

mined. In many situations a functional relation between the types
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that inhabit a multi-parameter type class is intended. Hence, Jones

proposed the functional dependency language extension [15], which

specifies that one class parameter determines another.

Functional dependencies became quite popular, not only to re-

solve ambiguity, but also as a device for type-level computation,

which was used to good effect, e.g., for operations on heterogeneous

collections [18]. They were supported by Hugs, Mercury, Habit [11]

and also GHC. However, the implementation in GHC has turned out

to be problematic: As far as we know, it is not possible to elaborate

all well-typed programs with functional dependencies into GHC’s

original typed intermediate language based on System F [7]. As a

consequence, GHC rejects programs that are perfectly valid accord-

ing to the theory of Sulzmann et al. [32]. What’s more, GHC’s type

checker does accept programs that violate the functional depen-

dency property.

With the advent of associated types [1] (a.k.a. type families)

came a new means for type-level computation, with a functional

notation. Because it too cannot be elaborated into System F, a new

extended core calculus with type-equality coercions was developed,

called System FC [31]. However, it was never investigated whether

functional dependencies would benefit from this more expressive

core language. To date functional dependencies remain a widely

popular, yet unreliably implemented feature. They are even gain-

ing new relevance as functional dependency annotations on type

families are being investigated [29].

Furthermore, as Jones and Diatchki [16] rightly pointed out, the

interaction of functional dependencies with other features has not

been formally studied. In fact, recent discussions in the Haskell

community indicate an interest in the interaction of functional

dependencies with type families (GHC feature request #11534).

Moreover, the unresolved nature of the problem has ramifications

beyond Haskell, as PureScript has also recently adopted functional

dependencies.
1

This paper revisits the issue of properly supporting functional

dependencies, and provides a full formalization that covers an elab-

oration into System FC for all well-typed programs.

Our specific contributions are:

• We present an overview of the shortcomings in the treatment

of functional dependencies (Section 2).

• We provide a formalization of functional dependencies that

exposes the implicit type-level function (Section 4).

• We present a type inference algorithm with evidence trans-

lation from source terms to System FC that is faithful to the

type system specification (Section 5).

• The meta-theory of our system states that the elaboration

into System FC is type-preserving (Section 6).

1http://goo.gl/V55whi

133

https://doi.org/10.1145/3122955.3122966
https://doi.org/10.1145/3122955.3122966
https://ghc.haskell.org/trac/ghc/ticket/11534
http://goo.gl/V55whi


Haskell’17, September 7-8, 2017, Oxford, UK G. Karachalias and T. Schrijvers

2 Overview
2.1 Functional Dependencies
The concept of a functional dependency originates in relational data-

base theory [28]: a relation R satisfies the functional dependency

X → Y , where X and Y are attributes of R, iff:

∀(x ,y1), (x ,y2) ∈ R. y1 = y2 (1)

In other words, every X value in R is associated with precisely

one Y value. The feature was first introduced in Haskell by Jones

[15] as an extension to multi-parameter type classes and has been

widely used over the years. The following variant of the well-known

collection example [17] illustrates the feature:

class Coll c e | c → e where
singleton :: e → c

The class Coll abstracts over collection types c with element type

e. The functional dependency (c → e) expresses that “c uniquely
determines e”. Hence, functional dependencies have exactly the

same meaning in Haskell as in relational database theory. After

all, a multi-parameter type class like Coll can easily be seen as a

relation over types. There is one main difference between Haskell

type classes and database relations: The latter are typically defined

extensionally (i.e., as a finite enumeration of tuples). In contrast,

the former are given intensionally by means of type class instances

(which can be seen as Horn clause rules) from which infinitely

many tuples can be derived by means of type class resolution.

Besides supporting functional dependencies syntactically as doc-

umentation for the programmer, Haskell also supports functional

dependencies semantically in two ways. Firstly, it enforces that the

type class instances respect the functional dependency. This means

for example that we cannot define two instances that associate

different element types with the same collection type:

instance Coll Integer Bit where {singleton c = . . . }
instance Coll Integer Byte where {singleton c = . . . }

Secondly, functional dependencies give rise to more precise types

and resolve ambiguities. For example, ignoring the functional de-

pendency of Coll, function:

singleton2 c = singleton (singleton c )

has the ambiguous type:

singleton2 :: (Coll c1 e,Coll c2 c1) ⇒ e → c2

Type variable c1 does not appear on the right of the⇒, which in

turn means that no matter what argument we call singleton2 on,
c1 will not be determined. Such ambiguous programs are typically

rejected, since their runtime behavior is unpredictable (Section 6).

Yet, the functional dependency expresses that c1 is not free, but
uniquely determined by the choice of c2, which will be fixed at call

sites. Hence, if we take the functional dependency into account,

singleton2 ’s type is no longer ambiguous.

While functional dependencies are well-understood in the world

of databases [28], their incarnation in Haskell is still surrounded

by a number of major algorithmic challenges and open questions.

2.2 Challenge 1: Enforcing Functional Dependencies
Unfortunately, the current implementation of functional depen-

dencies in the Glasgow Haskell Compiler does not enforce the

functional dependency property (Equation 1) in all circumstances.
2

The reason is that no criteria have been identified to do so under

the Liberal Coverage Condition [32, Def. 15], which regulates ways

of defining functional dependencies indirectly through instance

contexts. The following example illustrates the problem.

class C a b c | a → b where {foo :: a → c → b}

class D1 a b | a → b where {bar :: a → b}
class D2 a b | a → b where {baz :: a → b}

instance D1 a b ⇒ C [a] [b] Int where {foo [a] =[bar a]}
instance D2 a b ⇒ C [a] [b] Bool where {foo [a] =[baz a]}

instance D1 Int Int where {bar = id}
instance D2 Int Bool where {baz = even}

The above instances satisfy the Liberal Coverage Condition and

imply that the 3-parameter type class C is inhabited by triples

([Int], [Bool],Bool) and ([Int], [Int], Int). If we project the triples
on the functional dependency a→ b, then we see that [Int] is as-
sociated with both [Int] and [Bool]. In other words, the functional

dependency is violated.

Yet, as the following two expressions show, GHC has no qualms

about using both instances:

ghci> foo [1 :: Int] (True :: Bool)
[False]

ghci> foo [1 :: Int] (2 :: Int)
[1]

In short, GHC’s current implementation of functional dependencies

does not properly enforce the functional dependency property.

This is not an implementation problem, but points at problem in

the theory: it an open challenge how to do so under the Liberal

Coverage Condition.

2.3 Challenge 2: Elaborating Functional Dependencies
GHC elaborates Haskell source programs into the typed interme-

diate language System FC [31], which is an extension of System F

with type equality coercions. Among others, this elaboration pro-

cess turns type class constraints into explicitly passed witnesses,

the so-called type class dictionaries [9, 35].

Unfortunately, when it comes to functional dependencies, the

elaboration process is incomplete: While Sulzmann et al. [32] pro-

vide the most concise and formal account of functional dependen-

cies we are aware of, it has never been investigated how well-typed

programs with respect to Sulzmann et al. [32] can be elaborated

into System FC.

Hence, GHC currently rejects those programs it cannot elaborate.

It turns out, the problem is more general: due to the non-parametric

semantics of functional dependencies, it is not possible to translate

them to a statically-typed language like System F that features only

parametric polymorphism. Indeed, as we discuss in Section 6.3,

Hugs (which also translates to an intermediate language akin to

System F) suffers from the same problem. Consider for instance the

following program, which originates from GHC bug report #9627.

class C a b | a → b f :: C Int b ⇒ b → Bool
instance C Int Bool f x = x

2
See for example GHC bug reports #9210 and #10675.
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This program is rejected because GHC has difficulty determining

that type b equals Bool during the type-checking of function f . Yet,
it is actually not difficult to see that the equality holds. From the

functional dependency and the one instance for type class C, it
follows that Int is uniquely associated with Bool. Hence, from the

type class constraint C Int b, it must indeed follow that b equals

Bool; b is not a type parameter that can be freely instantiated.

How to elaborate all well-typed Haskell programs with func-

tional dependencies (with respect to the formal system of Sulzmann

et al. [32]) into a typed intermediate language like System FC is

currently an open problem.

2.4 Challenge 3: Deduplicating Functional Dependencies
About ten years ago, a new type-level feature was introduced in

Haskell that replicates much of the functionality of functional de-

pendencies: (associated) type families [1]. They provide a functional,

rather than a relational, notation for expressing a functional depen-

dency between types. For instance, with associated type families

we can express the Coll type class with a single parameter for the

collection type and an associated Elem type family for the element

type:

class Coll c where
type Elem c :: ∗
singleton :: Elem c → c

singleton2 :: (Coll c,Coll (Elem c )) ⇒ Elem (Elem c ) → c
singleton2 c = singleton (singleton c )

This development means that GHC’s Haskell dialect now supports

two similar features. This is not necessarily problematic for mod-

eling purposes, because each feature has its notational pros and

cons. However, the separate support for both features gives rise to

a lot of complexity in the type checker. While there has been a lot

of speculation about the comparable expressive power of the two

features, no formal comparison has been made. It is still an open

engineering challenge to simplify the type checker by sharing the

same infrastructure for both features.

2.5 Our Approach
The three challenges we have outlined above are all symptoms of

a common problem: While we have a formalization of functional

dependencies based on Constraint Handling Rules [32], we lack a for-
malization of functional dependencies that captures the functional

dependency property properly within the type system and elabo-

rates the feature into System FC. The former provides a common

ground for comparison with associated type families.

This paper provides such a formalization based on the conjecture

of Schrijvers et al. [25] that functional dependencies can be trans-

lated into type families. In terms of the Coll example this idea means

that we replace the functional dependency annotation (c → e ) by a

new type family FD and a “superclass” (see Section 3.2) constraint

(FD c ∼ e ) that captures the functional relation between the c and
e parameters.

class FD c ∼ e ⇒ Coll c e where
singleton :: e → c

type FD c :: ∗

pgm ::= cls; inst; val program

cls ::= class ∀ab .π ⇒ TC a | fd
m

where f :: σ class
inst ::= instance ∀ab .π ⇒ TC u where f = e instance
fd ::= a1 . . . an → a0 fundep
val ::= x = e value binding

e ::= x | e1 e2 | λx .e | let x = e1 in e2 term

σ ::= ρ | ∀a.σ type scheme
ρ ::= τ | Q ⇒ ρ qualified type
τ ::= a | T | τ1 τ2 | F (τ ) monotype
u ::= a | T | u1 u2 type pattern

ϕ ::= τ ∼ τ equality constraint
π ::= TC τ class constraint
Q ::= ϕ | π type constraint
C ::= ϵ | C,Q type constraint set

S ::= ∀a.C ⇒ Q constraint scheme

Figure 1. Source Syntax

Moreover, we derive an appropriate FD instance for every Coll
instance. For example, the list instance:

instance Coll [e] e where
singleton x = [x]

gives rise to the type family instance:

type FD [e] = e

Intuitively, this transformation implements an alternative definition

of a functional dependency: A relation R satisfies the functional

dependency X → Y , where X and Y are attributes of R, iff

∃f : X → Y . ∀(x ,y) ∈ R. f (x ) = y (2)

This paper addresses the challenges of functional dependencies

with a formalization of the above idea in terms of a fully formal

elaboration into System FC. Our elaboration represents type class

dictionaries with GADTs that hold evidence for the functional de-

pendencies. Unlike for other dictionary fields, pattern matching to

extract this evidence cannot be encapsulated in projection func-

tions but has to happen at use sites. While GHC already uses this

approach in practice for equalities in class contexts, as far as we

know this approach has never been formalised before.

3 Logical Reading of FDs and Type Classes
Before presenting our formalization of functional dependencies in

the next section, this section revisits the logical reading of type

classes and functional dependencies.

To aid readability, we first present the source syntax in Sec-

tion 3.1, and defer the logical interpretation of the class system to

Sections 3.2 and 3.3.

3.1 Syntax
The syntax of source programs is given in Figure 1. A program

pgm consists of class declarations cls, instance declarations inst and
variable bindings val.
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The syntax of class declarations and instances is standard; classes

and instances are allowed to have multiple type arguments, and

class declarations can also be annotated with functional dependen-

cies. Functional dependencies take the simple form a1 . . . an → a0.
3

We also explicitly separate the type variables a that appear in the

class/instance head from type variables b that appear only in the

class/instance context π .
Expressions comprise a λ-calculus, extended with let bindings.

The syntax of types also appears in Figure 1; like all HM(X)-based

type systems, we discriminate between monotypes τ ,4 qualified
types ρ and polytypes σ . Finally, we denote (possibly non-linear)

type patterns as u.
Note that monotypes τ include type family applications F (τ ), in

addition to the standard forms. Although we disallow type families

in the source text, as we illustrate in the rest of the section, in

our formalization each functional dependency gives rise to a type

family declaration.

In order to reduce the notational burden, we omit all mention of

kinds and assume that each class has exactly one method.

3.2 Logical Reading of Class Declarations
A class declaration of the form

class ∀ab .π ⇒ TC a | fd
1
, . . . , fdm where f :: σ

gives rise to two kinds of constraint schemes:

Superclass Constraint Schemes

SCπ = ∀a.TC a ⇒ θ (π ) ∀π ∈ π (CS1a)

where θ = det (a,π ) (we explain the meaning of function det below).
This constraint scheme expresses the logical reading of the super-

class relation: Given a class constraint, we can derive that each of

the superclass constraints is also satisfied. A simple example which

illustrates this is the following:

class Eq a where
eq :: a → a → Bool

class Eq a ⇒ Ord a where
ge :: a → a → Bool

The Ord class gives rise to the superclass constraint scheme:

∀a. Ord a ⇒ Eq a

(Observe that the implication arrow points in the opposite direction

of the one in the class declaration!) As a consequence, we do not

have to mention the Eq a constraint explicitly in the signature

of the function gt below. Instead, it can be derived implicitly by

the type-checker from the given Ord a constraint by means of the

scheme.

gt :: Ord a ⇒ a → a → Bool
gt x y = ge x y ∧ not (eq x y)

Functional dependencies complicate matters. Consider deriving the

superclass scheme for class D:

class C a b | a → b
class C a b ⇒ D a

By simply selecting the corresponding type in the class context, we

get the following, broken constraint scheme

∀a.D a ⇒ C a b

3
We do not consider multi-range FDs [32] which can be desugared into simple func-

tional dependencies [28].

4
Arrow types (τ1 → τ2 ) are expressed as ((→) τ1 ) τ2 .

where b is free! The source of this problem is that b is actually

existentially quantified, a more appropriate formulation would be:

∀a.D a ⇒ ∃!b .C a b

Our language of constraint schemes, which reflects Haskell’s type

system, does not support top-level existentials though, so such an

implication is not directly expressiblewithin the language. Yet, there

is a way to express b in terms of the in-scope variable a: Given that

classC comes with a functional dependency, there exists a function
symbol (skolem constant) FC such that FC a ∼ b (according to

Equation 2).
5
Hence, we can substitute b with FC a in the above

broken scheme to obtain the valid:

∀a.D a ⇒ C a (FC a)

The computation of such a substitution is performed by function

det, the formal description of which we defer until Section 4.1.4.

This example makes apparent why such class declarations have

been rejected by GHC until now: Without a way of explicitly ex-

pressing b in terms of a, there is no way to express this relation

within the type system.

Functional Dependency Constraint Schemes Every functional

dependency fdi ≡ ai1 . . . ain → ai0 that accompanies the class

logically corresponds to the following constraint scheme:

SCfdi
= ∀a. TC a ⇒ FTCi ai1 . . . ain ∼ ai0 (CS1b)

This constraint scheme directly expresses the functional depen-

dency: Given TC a, we know that there exists a function f such that

ai0 = f (ai1 , . . . ,ain ). We explicitly give this type-level function

for the i-th functional dependency of class TC the name
6 FTCi . For

example, our running example Coll gives rise to one such functional
dependency constraint scheme:

∀c e .Coll c e ⇒ FColl1 c ∼ e

Notice how this scheme realizes the first part of the informal trans-

formation of Schrijvers et al. [25]: If we (notionally) replace the

functional dependency with a superclass equality constraint, then

Scheme CS1b is just a special case of Scheme CS1a.

3.3 Logical Reading of Class Instances
A class instance

instance ∀ab .π ⇒ TC u where f = e

also yields two kinds of constraint schemes:

Instance Constraint Scheme

SIπ = ∀ab .π ⇒ TC u (CS2a)

This constraint scheme directly expresses the logical reading of the

class instance: “If the context π is satisfied, then (TC u) also holds”.
For example, the list instance of Eq yields the scheme:

∀e .Eq e ⇒ Eq [e]

5
We use symbol “∼” to denote type equality, following the convention of earlier work

on System FC [31].

6
As a matter of fact, Jones suggested assigning names to functional dependencies as

an interesting extension in his original work [15].
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FD Witness Constraint Schemes Every functional dependency

fdi ≡ ai1 . . . ain → si0 that accompanies the class also yields a

constraint scheme for the instance:

SIfdi = ∀ci . FTCi ui1 . . . uin ∼ θ (ui0 ) (CS2b)

where ci = fv (ui1 , . . . ,uin ) and θ = det (ci ,π ). The idea of this

constraint scheme is to (partly) define the function FTCi that wit-
nesses the functional dependency. The partial definition covers the

subset of the domain that is covered by the class instance. Other

instances give rise to schemes that cover other parts of the function.

For example, the following program:

class TC a b | a → b
instance TC Int Bool
instance TC (Maybe a) a

gives rise to the following FD witness constraint schemes (axioms):

FTC Int ∼ Bool
∀a.FTC (Maybe a) ∼ a

Observe that these schemes are essentially type family instances.

Similarly to the superclass constraint schemes, FD witness con-

straint schemes are quite challenging to derive in the general case.

At first sight, it seems easy to determine the right-hand side ui0 :
simply take the corresponding parameter in the instance head. This

indeed works for the simple examples above, but fails in more

advanced cases.

Consider deriving the scheme for the following instance:

instance TC a b ⇒ TC [a] [b]

Simply selecting the corresponding type in the instance head, gives:

SI ′′fd = ∀a.FTC [a] ∼ [b]

This equation is broken again, as type variable b is free.

What happens here is that [b] is not determined directly by the

other instance argument [a], but indirectly through the instance

context (TC a b). If we apply the FD Constraint scheme to this

instance context, we obtain that (FTC a ∼ b). This equation allows

us to express b in terms of a. If we substitute it into the broken

equation above, we do obtain a valid defining equation.

SI ′′fd = ∀a.FTC [a] ∼ [FTC a]

Essentially, the FD witness constraint scheme realizes the second

part of the transformation of Schrijvers et al. [25]: For every class

instance, we generate a new type family instance for each functional

dependency of the class.

In general, the derivation of a proper defining equation may

require an arbitrary number of such substitution steps. We return

to this in Section 4.1.4.

4 Type Checking
We now turn to the declarative type system of Haskell with func-

tional dependencies. Our formalization utilizes the syntax we pre-

sented in Section 3.1, which we now augment with the typing and

instance environments:

I ::= • | I , S instance environment
Γ ::= • | Γ,a | Γ,x : σ typing environment

The instance environment I is prepopulated by the constraint

schemes induced by the program’s class and instance declarations,

and is then extended with local assumptions when moving under a

qualified type. The typing environment Γ is standard, but we omit

kind information for brevity.

4.1 The Type System
Figure 2 presents the typing rules for our system. By design, it

closely resembles the system of Chakravarty et al. [1].

Similarly to earlier work on type class elaboration [9] and as-

sociated types [1, 2], we maintain the constraint schemes (context

reduction rules) as part of the instance environment I .

4.1.1 Type Checking Terms
The judgment for typing terms is presented in Figure 2 and takes

the form I ; Γ ⊢tm e : σ . Most of the rules correspond to those for

the polymorphic lambda calculus [7] with qualified types [12]. The

only interesting case is Rule TmCast, which allows for casting the

type of a term e from σ1 to σ2, as long as the equality of these types
can be established. The satisfiability of the equality constraint is

established via the constraint entailment relation I |= S, which is

the focus of the next subsection.

Furthermore, Rules (∀E) and (→I ) check the well-formedness of

types via relation Γ ⊢ty σ . Since it is entirely standard, we omit its

definition from our main presentation (it can be found in technical

Appendix A).

4.1.2 Constraint Entailment
The constraint entailment relation takes the form I |= S and is given
by the following rules:

I |= ∀a.S

I |= [τ/a]S
Inst

I |= τ ∼ τ
Refl

I |= τ2 ∼ τ1
I |= τ1 ∼ τ2

Sym

I |= τ1 ∼ τ2 I |= τ2 ∼ τ3
I |= τ1 ∼ τ3

Trans

I |= Q ⇒ S I |= Q

I |= S
MP

S ∈ I

I |= S
Spec

I |= [τ1/a]Q I |= τ1 ∼ τ2
I |= [τ2/a]Q

Subst

Our system needs to check entailment of both type class and equal-

ity constraints, which is reflected in its rules: Rules Refl, Trans,

Sym and Subst constitute the four standard equality axioms. MP is

the elimination rule, and Rule Inst instantiates a constraint scheme

with a monotype. Rule Spec is the standard axiom rule. Like in

Jones’ Constructor Classes [13], the entailment relation I |= S is

transitive, closed under substitution and monotonic (if I1 |= S then
I1, I2 |= S).

4.1.3 Type Checking Declarations
Declaration typing also appears in Figure 2 and is –for themost part–

standard. Since the value binding typing relation (I ; Γ1 ⊢val val : Γ2)
and the program typing relation (⊢pgm pgm) are uninteresting, we

elide them from our presentation (they can be found in technical

Appendix A). Typing Rules Class and Instance type check class

and instance declarations, respectively, and give rise to the con-

straint schemes we presented in Section 3. Both rules differ from

earlier work in two ways:

1. The Liberal Coverage Condition [32, Def. 15] is enforced by the

specification (fv (θi (ui0 )) ⊆ fv (uin ), θi = det (fv (uin ),π )), rather
than being an additional, external restriction. This design choice

is rather easy to motivate: If the domain of the functional de-

pendency does not determine (even indirectly, via the context)
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I ; Γ ⊢tm e : σ Term Typing

(x : σ ) ∈ Γ

I ; Γ ⊢tm x : σ
TmVar

I ; Γ ⊢tm e : σ1 I |= σ1 ∼ σ2
I ; Γ ⊢tm e : σ2

TmCast

I ; Γ,a ⊢tm e : σ a < Γ

I ; Γ ⊢tm e : ∀a.σ
(∀I )

I ; Γ ⊢tm e : ∀a.σ Γ ⊢ty τ

I ; Γ ⊢tm e : [τ/a]σ
(∀E )

x < dom(Γ) Γ ⊢ty τ1 I ; Γ,x : τ1 ⊢tm e : τ2

I ; Γ ⊢tm λx .e : τ1 → τ2
(→I )

I ; Γ ⊢tm e1 : τ2 → τ1 I ; Γ ⊢tm e2 : τ2
I ; Γ ⊢tm e1 e2 : τ1

(→E )

I ,Q; Γ ⊢tm e : ρ

I ; Γ ⊢tm e : Q ⇒ ρ
(⇒I )

I ; Γ ⊢tm e : Q ⇒ ρ I |= Q

I ; Γ ⊢tm e : ρ
(⇒E )

I ; Γ,x : τ ⊢tm e1 : τ x < dom(Γ) I ; Γ,x : τ ⊢tm e2 : σ

I ; Γ ⊢tm let x = e1 in e2 : σ
TmLet

I ; Γ ⊢cls cls : Ic ; Γc Class Declaration Typing

θ = det (a,π ) unambig(b,a,π ) Γ,a ⊢ty σ fdi ≡ ain → ai0

I ; Γ ⊢cls class ∀ab .π ⇒ TC a | fd
m

where f :: σ : [∀a.TC a ⇒ θ (π ),∀a.TC a ⇒ FTCi (a
in ) ∼ ai0

m
]; [f : ∀a.TC a ⇒ σ ]

Class

Ic ; Ii ; Γ ⊢inst inst : I Instance Declaration Typing

θ = det (a,π ) unambig(b,a,π ) ( f : ∀a.TC a ⇒ σ ) ∈ Γ Ic , Ii ,π ; Γ ⊢tm e : [u/a]σ
θi = det (fv (uin ),π ) fv (θi (ui0 )) ⊆ fv (uin ) ∀(fdi ≡ ain → ai0 ) Ic , Ii , [u/b ′]π |= [u/b ′]Q ∀(∀b

′
.TC b

′
⇒ Q) ∈ Ic

Ic ; Ii ; Γ ⊢inst instance ∀ab .π ⇒ TC u where f = e : [∀ai .FTCi (u
in ) ∼ θi (ui0 )

m
,∀a.θ (π ) ⇒ TC u]

Instance

Figure 2. Declarative Type System

its own image, then the FD has no interpretation as a type-level

function.

2. The specification does not accept ambiguous class or instance
contexts (unambig(b,a,π )). Predicate unambig is defined as:

unambig(b,a,π ) ≜ b ⊆ dom(det (a,π ))

For class contexts this restriction ensures the well-formedness

of the generated constraint schemes. Similarly, for instance con-

texts it ensures coherent semantics.

4.1.4 Determinacy Relation
The determinacy relation takes the form det (a,π ) = θ and can

be read as “ Given known type variables a and a set of local class
constraints π , substitution θ maps type variables in π to equivalent
types that draw type variables only from a”.

Formally, we define det (a,π ) = θ as a;π ⊢D • ⇝
! θ , where

relation a;π ⊢D θ1 ⇝ θ2 has a single rule:

TC τ ∈ π TC a | ai1 . . . ain → ai0
fv (τi0 ) ⊈ a ∪ dom(θ ) fv (τi1 , . . . ,τin ) ⊆ a ∪ dom(θ )

a;π ⊢D θ ⇝ [ProjTj (FTCi (θ (τi1 ), . . . ,θ (τin )))/fv (τi0 )] · θ
StepD

We use the exclamation mark (!) to denote repeated applications

of Rule StepD , until it does not apply anymore. Note that if the

superclass declarations of the program form a Directed Acyclic
Graph (DAG), then this procedure is terminating.

7

As an example of what the determinacy relation computes, con-

sider the following example from Sulzmann et al. [32]:

class G a b | a → b class F a b | a → b
class H a b | a → b instance (G a c,H c b) ⇒ F [a] [b]

7
Readers familiar with the work of Sulzmann et al. [32] will recognize that

dom(det (a, π )) = closure(a, π ), where closure( ·, ·) as defined in the Refined Weak
Coverage Condition [32, Def. 15]. That is, it computes the set of determined variables

of π , along with a “proof” of their determinacy.

We compute the set of determined variables det (a, {G a c,H c b})
as follows:

• ⇝ [FG (a)/c] (from (G a c ))
⇝ [FH (FG (a))/b, FG (a)/c] (from (H c b))
̸⇝

To illustrate what the projection type functions ProjTi (·) do, let us
consider an alternative instance for F :

instance (G a (c, Int),H c b) ⇒ F [a] [b]

In this case, we can no longer derive c ∼ FG (a) but rather (c, Int) ∼
FG (a). If we have a type-level function Fst available:

axiom Fst a1 a2 : Fst (a1,a2) ∼ a1

then c can be expressed in terms of a as: c ∼ Fst (FG (a)). In this

case, det (a, {G a (c, Int),H c b}) proceeds as follows:

• ⇝ [Fst (FG (a))/c] (from (G a (c, Int)))
⇝ [FH (Fst (FG (a)))/b, Fst (FG (a))/c] (from (H c b))
̸⇝

In general, a projection function ProjTi (·) is given by a single axiom

axiom д an : ProjTi (T a1 . . . an ) ∼ ai

As we illustrate in Appendix A.10, there is no need for such projec-

tion axioms, if we equip our system with kind polymorphism [36].

Yet, for simplicity, we assume in the rest of the paper that such

projection functions exist for all data types.

Notice that det (π ,a) can be non-deterministic (multiple deriva-

tions for the same variable). For simplicity, we assume for the rest of

the paper that it is deterministic, but return to this issue in Section 6.

5 Type Inference & Elaboration into System FC
This section exlains how to infer (principal) types for source lan-

guage programs and how to elaborate them into System FC at the

same time.
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υ ::= a | T | υ1 υ2 | F (υ) | ∀a. υ | ψ ⇒ υ type

γ ::= ⟨υ⟩ | sym γ | left γ | right γ | γ1 o

9
γ2 | ψ ⇒ γ coercion

| F (γ ) | ∀a. γ | γ1[γ2] | д υ | c | γ1@γ2 | γ1 γ2

ψ ::= υ1 ∼ υ2 proposition

t ::= x | K | Λa. t | t υ | λ(x : υ). t | t1 t2 | Λ(c : ψ ). t term
| t γ | t ▷ γ | case t1 of p → t2 | let x : υ = t1 in t2

p ::= K b (c : ψ ) (d : τ ) ( f : υ) pattern

decl ::= data T a where K : υ datatype declaration
| type F (a) family declaration
| axiom д a : F (u) ∼ υ equality axiom
| let x : υ = t value binding

Figure 3. System FC Syntax

5.1 Target Language: System FC
Figure 3 presents the syntax of System FC [31], our target language.

System FC extends the polymorphic lambda calculus [7] with first-

class type equality proofs, called coercions.
Denoted by γ , coercions are evidence terms, encoding the proof

tree for a type equality. Reflexivity ⟨υ⟩, symmetry (sym γ ) and tran-
sitivity (γ1 o

9
γ2) express that type equality is an equivalence relation.

Syntactic forms F (γ ) and (γ1 γ2) capture injection, while (left γ )
and (right γ ) capture projection, which follows from the injectivity

of type application. Equality for universally quantified and qualified

types is witnessed by forms ∀a.γ andψ ⇒ γ , respectively. Similarly,

forms γ1[γ2] and γ1@γ2 witness the equality of type instantiation

or coercion application, respectively.

The most interesting forms are coercion variables c and coer-

cion axioms д υ. The former represent local constraints [23, 34],
which can be introduced via GADT [21] pattern-matching. The

latter constitute the axiomatic part of the theory, and are generated

from top-level axioms, which correspond to type family instances,

newtype declarations [20], or, as we illustrate in Section 5.6.2, type

class instances.

Since System FC is impredicative, the syntax of types υ does not

discriminate between monotypes and type schemes. Yet, by con-

vention, throughout the rest of the paper we use the metavariable τ
to denote either source or System FC monotypes, since their syntax

coincides. Similarly, we often use ϕ for propositions. Like in the

source language, we elide all mention of kinds.

Expressions are standard, with the notable extensions of coercion

abstraction Λ(c : ψ ).t , coercion application (t γ ) and explicit type

casting (t ▷ γ ). In simple terms, if a term t has type υ1 and γ is a

witness of the equality υ1 ∼ υ2, (t ▷ γ ) has type υ2. For the purpose
of our work, it suffices to consider data types with a single data

constructor, and case expressions with a single branch.

Declarations also appear in Figure 3. They include data type

declarations, type family declarations, top-level equality axioms

and value bindings.

We omit the type system of System FC from our main presenta-

tion. It can be found in [31] and is replicated in Appendix B.

5.2 Additional Constructs
During elaboration, we use the following additional constructs.

Type & Evidence Substitutions Much like HM(X) computes a

type substitution when solving type constraints for refining as

of yet unknown types, during inference we compute an evidence
substitution η, for refining as of yet unknown class dictionaries d
and type equality coercions c:

η ::= • | [t/d] · η | [γ/c] · η

Type substitutions are standard, and map unification variables (de-

noted by Greek letters α and β) to monotypes:

θ ::= • | [α/τ ] · θ

Evidence Annotations In order to perform type inference and

elaboration into System FC simultaneously, we annotate all evi-

dence types (equalities ϕ and class constraints π ) with their corre-

sponding System FC evidence variable, lifting the instance environ-

ment I to the program theory P :

P ::= • | P ,д a : F (u) ∼ τ | P , c : ϕ | P ,d : π | P ,d : ∀a.π ⇒ TC u

Simlarly for constraints:

E ::= • | E, c : ϕ annotated type equalities
P ::= • | P,d : π annotated class constraints
Q ::= c : ϕ | d : π annotated type constraint
C ::= • | C,Q annotated type constraints

Match Contexts We also introduce match contexts E, that is,
nested case expressions with a hole.

E ::= □ | case d of p → E

Match contexts are introduced via dictionary destruction, denoted
as P ⇓ E which we define as follows:

• ⇓ □
Empty

KTC : ∀ab .ψ ⇒ τ → υ → T a

b ′, c,d, f fresh θ = [υ ′/a,b ′/b] d : θ (τ ),P ⇓ E2
E = case da of KTC b ′ (c : θ (ψ )) (d : θ (τ )) ( f : θ (υ)) → E2

(da : TTC υ ′),P ⇓ E
(⇓)

Dictionary destruction P ⇓ E recursively pattern matches against

class dictionaries P in a depth-first fashion, thus exposing all su-

perclass constraints and FD-induced type equalities. In short, it

computes the transitive closure of the superclass relation.

Throughout the rest of the paper we also denote the evidence

or typing bindings introduced by a match context E as PE or ΓE,
respectively.

5.3 Term Elaboration
Figure 4 presents type inference and elaboration of terms into

System FC. The judgment takes the form Γ ⊢tm e : τ ⇝ t | P; E.
Given a typing environment Γ and a term e , it computes a set of

wanted class constraints P, a set of pending equality constraints E,

a monotype τ , and a System FC term t .
The most interesting rule is TmVar, which handles variables. We

denote by a the type variables that appear in τ , and by b the ones

that appear only in the context π . The rule introduces wanted class
constraints, appropriately instantiated with fresh unification and

dictionary variables.
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Γ ⊢tm e : τ ⇝ t | P; E Term Elaboration

(x : ∀ab .π ⇒ τ ) ∈ Γ

α ,d fresh θ = [α/a] · det (π ,a)

Γ ⊢tm x : θ (τ )⇝ x α (θ (b)) d | (d : θ (π )); •
TmVar

Γ,x : α ⊢tm e : τ ⇝ t | P;E α fresh

Γ ⊢tm λx .e : (α → τ )⇝ λ(x : α ).t | P; E
TmAbs

Γ ⊢tm e1 : τ1 ⇝ t1 | P1;E1 Γ ⊢tm e2 : τ2 ⇝ t2 | P2; E2
α , c fresh P = P1,P2 E = E1, E2, c : τ1 ∼ τ2 → α

Γ ⊢tm e1 e2 : a⇝ (t1 ▷ c ) t2 | P; E
TmApp

Γ,x : α ⊢tm e1 : τ1 ⇝ t1 | P1; E1
Γ,x : τ1 ⊢tm e2 : τ2 ⇝ t2 | P2; E2

α , c fresh P = P1,P2 E = E1, E2, c : α ∼ τ1

Γ ⊢tm (let x = e1 in e2) : τ2 ⇝ (let x : τ1 = t1 in t2) | P; E
TmLet

Figure 4. Term Elaboration

Notice that, unlike a, b are not instantiated with fresh unification

variables. Instead, we use the determinacy relation to express them

in terms of a. For example, given class D a b | a → b, and (x :

D a b ⇒ a → a) ∈ Γ, we infer for x type α → α , giving rise to the

wanted constraint D α (FD α ).

This treatment of b allows the unification algorithm of the next

section to indirectly refine the non-parametric parameters of class

constraints. Of course, this requires that x ’s signature is unambigu-
ous, an issue we return to in Section 6.5.

Rule TmAbs is entirely standard.

Rule TmApp handles term applications (e1 e2). In addition to

the constraints introduced by each subterm, we also require that

(τ1 ∼ τ2 → α ), like all HM(X)-based systems. In order to ensure

that the elaborated term is well-typed, we explicitly cast e1 with c ,
which serves as a placeholder for the equality proof computed by

the constraint entailment relation (Section 5.5).

Rule TmLet handles (possibly recursive) let bindings. To simplify

matters and as proposed by Vytiniotis et al. [33], we do not perform

generalization.

5.4 Type Unification
We now turn to type unification in the presence of functional de-

pendencies.

Type Reduction Judgment P ⊢R τ ⇝ τ ′;γ defines a (single-step)

type reduction relation on monotypes, specified by the following

rules.

P ⊢R τ1 ⇝ τ ′
1
;γ

P ⊢R τ1 τ2 ⇝ τ ′
1
τ2;γ ⟨τ2⟩

LeftR
P ⊢R τ2 ⇝ τ ′

2
;γ

P ⊢R τ1 τ2 ⇝ τ1 τ
′
2
; ⟨τ1⟩ γ

RightR

P ⊢R τi ⇝ τ ′i ;γi τ ′j = τj ,∀j , i

P ⊢R F (τn )⇝ F (τ ′n ); F (⟨τ1⟩, · · ·γi , · · · ⟨τn⟩)
ArgR

(д a : F (u) ∼ τ ) ∈ P

P ⊢R [τ/a]F (u)⇝ [τ/a]τ ;д τ
AxiomR

We perform type reduction under program theory P , such that

Rule AxiomR can expand type family applications when an ap-

propriate axiom matches. We also annotate the reduction with a

coercion γ , which witnesses the equality τ ∼ τ ′, as is required by

the unification relation which we discuss next. It is straightforward

to show that type reduction is sound:

Lemma 5.1 (Soundness of Type Reduction). If P ⊢R τ1 ⇝ τ2;γ ,
then P ; fv (τ1) ⊢co γ : τ1 ∼ τ2.

Unification Type reduction is used by the single-step unification
relation P ⊢U c : τ1 ∼ τ2 ⇝ E;θ ;η, which is given by rules

P ⊢U c : τ ∼ τ ⇝ •; •; [⟨τ ⟩/c]
ReflU

P ⊢U c
′
: τ2 ∼ τ1 ⇝ E;θ ;η c ′ fresh

P ⊢U c : τ1 ∼ τ2 ⇝ E;θ ;η · [sym c ′/c]
SymU

α < fv (τ )

P ⊢U c : α ∼ τ ⇝ •; [τ/α]; [⟨τ ⟩/c]
VarU

P ⊢R F (τ )⇝ τ2;γ c ′ fresh

P ⊢U c : F (τ ) ∼ τ1 ⇝ {c ′ : τ2 ∼ τ1}; •; [γ o

9
c ′/c]

RedU

c1, c2 fresh γ = c1 c2

P ⊢U c : τ1 τ2 ∼ τ
′
1
τ ′
2
⇝ {c1 : τ1 ∼ τ

′
1
, c2 : τ2 ∼ τ

′
2
}; •; [γ/c]

AppU

In layman’s terms, the judgment holds for an equality τ1 ∼ τ2 iff the

unification problem can be reduced to a simpler unification problem

for the set of equality constraints E and type substitution θ . Since
in our target language casting needs explicit equality proofs, we

also accumulate an evidence substitution η, which explains how

evidence for E can be turned into evidence for τ1 ∼ τ2.

5.5 Constraint Entailment
Single-step constraint entailment takes the form P ⊢E Q ⇝ C;θ ;η
and simplifies a constraint Q to a set of simpler C and a type

substitution θ . Additionally, it computes an evidence substitution

η, which maps evidence variables (coercion or dictionary variables)

to evidence terms composed by the simpler evidence. The relation

is given by the following rules:

(d ′ : ∀a.π ⇒ TC u) ∈ P d fresh t = d ′ τ d

P ⊢E d : [τ/a](TC u)⇝ (d : [τ/a]π ); •; [t/d]
ClsE

P ⊢U c : τ1 ∼ τ2 ⇝ E;θ ;η

P ⊢E c : τ1 ∼ τ2 ⇝ E;θ ;η
EqE

P ⊢R τi ⇝ τ ′i ;γi ∀i ∈ [1 . . .n] d ′ fresh

P ⊢E (d : TC τn )⇝ (d ′ : TC τ ′n ); •; [d ′ ▷ TTC sym γi
n/d]

RedE

Our system needs to handle both class and equality constraints,

which is reflected in the rules: Rule ClsE formalizes the standard

SLD resolution (backwards chaining), Rule EqE performs single-

step unification on equality constraints, and Rule RedE allows for

type reduction on class parameters.

By repeatedly applying single-step constraint entailment, we

obtain the reflexive and transitive closure P ⊢E C ⇝
∗ C;θ ;η (see

Appendix A for its formal definition). We denote the case when

C cannot be further reduced as P ⊢E C⇝
! C′;θ ;η. To ensure that

type inference is decidable, it is essential that constraint entailment

is terminating; Section 6.1 provides sufficient conditions.
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Γ ⊢cls cls⇝ decl | Γc Class Elaboration

unambig(b,a,π ) Γ,a ⊢ty σ ⇝ υ Γ,a,b ⊢cc π ⇝ τ ψi = FTCi (a
in ) ∼ ai0 fdi ≡ ain → ai0

declc = [data TTC a where {KTC : ∀ab .ψ ⇒ τ → υ → TTC a }, type FTCi a
in
m
, f = Λa.λ(d : TTC a).case d of {KTC b c d x → x }]

Γ ⊢cls class ∀ab .π ⇒ TC a | fd
m

where f :: σ ⇝ declc | [f : ∀a.TC a ⇒ σ ]
Class

P ; Γ ⊢inst inst ⇝ decl | Pi Instance Elaboration

unambig(b,a,π ) (d : π ) ⇓ E dI ,d fresh PI = P , Pax ,d : π , PE ΓI = Γ,a,b, ΓE SI = ∀ab .π ⇒ TC u

Γ,a,b ⊢cc π ⇝ τ ( f : ∀a′.TC a′ ⇒ σ ) ∈ Γ PI ,dI : SI ; ΓI ⊢tm e : [u/a′]σ ⇝ t SI ↪→ Pax PI ⊢sc TC u ⇝ (τb , td ,γ c )

P ; Γ ⊢inst instance ∀ab .π ⇒ TC u where f = e ⇝ [axiom Pax ,dI = Λab .λ(d : τ ).E[KTC τb td γ c t]] | [Pax ,dI : ∀ab .π ⇒ TC u]
Instance

Figure 5. Declaration Elaboration

5.6 Declaration Elaboration
Finally, Figure 5 presents elaboration of declarations. Only elabo-

ration of class and instance declarations is given, since the other

cases are entirely standard (see Appendix A).

5.6.1 Elaboration of Class Declarations
Class elaboration takes the form Γ ⊢cls cls⇝ decl | Γc and is given

by a single rule, Rule Class.

The encoding of a class constraint in System FC is that of a GADT-

dictionary [21], such that we can store existentially quantified

variables b, as well as the local constraintsψi , each corresponding

to a functional dependency annotation.

In contrast to earlier formalizations of type classes, checking

a class declaration does not give rise to a direct extension of the

program theory. While Equation CS1a may have a direct interpre-

tation as a System FC term, Equation CS1b does not: System FC

does not support functions that return coercions; this would not be

compatible with System FC’s coercion erasure and a call-by-need

semantics.

Instead, both schemes can be uniformly elaborated as match
contexts. For example, the following match context corresponds to

the logical implication Ord a ⇒ Eq a:

E = case dOrd of { KOrd dEq f → □ }

We reject unconditionally ambiguous class declarations, via restric-

tion unambig(b,a,π ).

5.6.2 Elaboration of Class Instances
Instance elaboration also appears in Figure 5 and takes the form

P ; Γ ⊢inst inst ⇝ decl | Pi . That is, an instance declaration inst is
elaborated to System FC declarations decl and gives rise to the pro-

gram theory extension Pi . To aid readability, we formalize instance

elaboration by means of the following auxiliary relations:

Axiom Generation As we explained in Section 3, each class in-

stance gives rise to a type family axiom for every functional depen-

dency of the class. This semantics is reflected in Equation CS2b,

and directly corresponds to axioms Pax , as produced by relation:

(fdi ≡ ain → ai0 ) ∈ (fd
m
∈ TC)

θi = det (fv (uin ),π ) fv (θi (ui0 )) ⊆ fv (uin ) д fresh

(∀ab .π ⇒ TC u) ↪→ дi (fv (uin )) : FTCi (u
in ) ∼ θi (ui0 )

m AxGen

Premise fv (θi (ui0 )) ⊆ fv (uin ) ensures that the generated axioms

are well-formed; like the Liberal Coverage Condition [32] it checks

that the image of every functional dependency is determined by its

domain.

Method Translation & Type Subsumption Since method im-

plementations are in effect explicitly typed, we need a procedure

for deciding type subsumption. We say that a polytype σ1 subsumes
polytype σ2, if any expression that can be assigned type σ1 can

also be assigned type σ2. Since we elaborate during inference, we
perform type inference and the subsumption check simultaneously,

by means of relation P ; Γ ⊢tm e : σ ⇝ t , which is given by rule:

Γ ⊢tm e : τ1 ⇝ t | P; E

Γ ⊢ty (∀a.π ⇒ τ2) Γ ⊢cc π ⇝ τ c,d fresh

(d : π ) ⇓ E P , (d : π ), PE ⊢E P, E, (c : τ1 ∼ τ2)⇝
! •;θ ;η

P ; Γ ⊢tm e : (∀a.π ⇒ τ2)⇝ Λa.λ(d : τ ).E[η(θ (t ▷ c ))]
(⪯)

In short, from the assumption π we need to be able to completely

derive all constraints that arise from typing e and the equality

(τ1 ∼ τ2). We locally extend the program theory with the transi-

tive closure of the superclass relation on π , thus exposing both

superclass dictionaries and FD constraints induced by π .

Superclass Entailment Furthermore, we need to ensure that the

instance context π (along with the newly created axioms Pax ) com-

pletely entails the superclass and FD constraints. This procedure is

captured by relation Pinst ⊢sc (TC u)⇝ (τ , t ,γ ):

class ∀ab .π ⇒ TC a | fd
m

c,d fresh θ = [u/a] · det (π ,a)

Pinst ⊢E (d : θ (π )), (c : θ (FTCi (a
in ) ∼ ai0 ))⇝

! •;θs ;ηs

Pinst ⊢sc (TC u)⇝ (θs (θ (b)),ηs (d ),ηs (c ))
SC

Notice that the relation also computes the existential types intro-

duced in the superclass context θs (θ (b)), which should also be

stored in the resulting GADT dictionary.

Instance Elaboration Finally, Rule Instance utilizes the above

relations to produce the dictionary transformer dI , which reflects

the Instance Constraint Scheme (Equation CS2a).

Since we do not encode the superclass relation using constraint

schemes but via match contexts, both the method elaboration and

the superclass entailment are performed under environment Pall ,
which includes not only the instance context π and axioms Pax , but

141



Haskell’17, September 7-8, 2017, Oxford, UK G. Karachalias and T. Schrijvers

also the transitive closure of the superclass relation P ′, obtained by

exhaustively destructing assumptions π .

6 Metatheory
This section considers the key meta-theoretical properties of both

the type system and the type inference & elaboration algorithm.

6.1 Termination of Type Inference
Our Termination Conditions ensure termination of type inference:

(a) The superclass relation forms a directed acyclic graph (DAG).
8

(b) In each class instance (instance ∀ab .π ⇒ TC u):
• no variable has more occurrences in a type class constraint

π than the head (TC u), and
• each class constraint π in the context π has fewer construc-

tors and variables (taken together, counting repetitions) than

the head (TC u).
(c) For every generated axiom (д a : F (u) ∼ τ ), in every subterm

(F1 (τ 1) ⊆ τ ):
• there is no subterm (F2 (τ 2) ⊆ F1 (τ 1)),
• the sum of the number of type constructors and type variables

is smaller than the corresponding number in u, and
• there are not more occurrences of any variable a than in u.

The first restriction ensures that relations det (π ,a) and (P ⇓ E)
terminate, since they both compute the transitive closure of the

superclass relation.

The second restriction, borrowed from the Paterson Conditions

[32, Def. 11], ensures that instance contexts are decreasing, so that

class resolution (Rules ClsE and Rules RedE ) is also terminating,

given that the type equality axioms are strongly normalizing.

Lastly, the third restriction (borrowed from Schrijvers et al. [22,

Def. 5]) ensures that the generated axioms are strongly normal-

izing, that is, confluent and terminating, which allows us to turn

constraint entailment (Section 5.5) into a deterministic function.

Theorem 6.1. If a program satisfies the Termination Conditions,
then type inference terminates.

6.2 Functional Dependency Property
There are two important properties that regulate the functional

dependency property.

Compatibility Firstly, we need to make sure that there are no

two conflicting definitions that associate two different values with

the same key. To this end, we impose the Compatibility Condition:

Definition 6.2 (Compatibility Condition). Let there be a class dec-

laration and any pair of instance declarations for that class:

class ∀ab .π ⇒ TC a | fd
1
, . . . , fdm where f :: σ

instance ∀a1b1.π 1 ⇒ TC u1 where f = e1
instance ∀a2b2.π 2 ⇒ TC u2 where f = e2

Then, for each functional dependency fdi ≡ ai1 , . . . ,ain → ai0 the
following should hold:

compat (FTCi (u
in
1
) ∼ θi1 (ui01), FTCi (u

in
2
) ∼ θi2 (ui02))

where θi1 = det (fv (uin
1
),π 1) and θi2 = det (fv (uin

2
),π 2).

8
This restriction is already present in the Haskell2010 standard, as well as enforced by

major Haskell implementations (e.g. the Glasgow Haskell Compiler).

Relation compat (·, ·) is the compatibility relation, as defined by Eisen-
berg et al. [5]:

Definition 6.3 (Compatibility). Two equalities ϕ1 = F (u1) ∼ τ1
and ϕ2 = F (u1) ∼ τ2 are compatible –denoted as compat (ϕ1,ϕ2)–
iff unify (u1,u2) = θ implies θ (τ1) = θ (τ2).

In the nomenclature of Jones [15, Section 6.1] and Sulzmann

et al. [32, Def. 6–8] compatibility is known as consistency. Both
works impose a very conservative consistency condition, which

requires, for any two instance heads (TC u1) and (TC u2) and any

functional dependency fdi ≡ ain → ai0 of class TC, that θ (ui01) =
θ (ui02) if unify (u

in
1
,uin

2
) = θ . This means that the function is fully

determined by the instance head, and cannot depend on the instance

context. The latter is supported by our more liberal Compatibility

Condition, which meets Section 2.2’s Challenge 1, by providing a

criterion to verify the consistency of more liberal instances.

Notice that both Jones and Sulzmann et al. consider an additional

property, coverage, which stipulates that the image of every func-

tional dependency instance is fully determined by its domain. Jones

enforces this property through a conservative condition, while Sulz-

mann et al. consider the more liberal Liberal Coverage Condition [32,
Def. 15] which also takes the instance context into account. Our

system does not require an external coverage condition as it already

internalizes coverage in the determinacy relation (Section 4.1.4).

Unambiguous Witness Functions Secondly, we need to make

sure that the function that witnesses the functional dependency is

uniquely determined. For this reason, we impose the Unambiguous

Witness Condition.

Definition 6.4 (Unambiguous Witness). Let there be a class dec-
laration and any instance for that class:

class ∀ab .π ⇒ TC a | fd
m

where f :: σ

instance ∀a′b
′
.π ′ ⇒ TC u where f = e

Then, for each functional dependency fdi ≡ ain → ai0 it is required

that det (π ′, fv (uin )) is non-ambiguous on fv (ui0 ).

A witness derivation det (π ,a) = θ is non-ambiguous on type
variables b iff b ⊆ dom(θ ) and θ (b) is independent of the order in
which relation a;π ⊢D θ1 ⇝ θ2 selects class constraints π from π .

To see why this condition is important, consider for example the

following declarations:

class C1 a b | a → b class C a b | a → b
class C2 a b | a → b instance (C1 a b,C2 a b) ⇒ C [a] [b]

What axiom should the C instance give rise to? Using the instance

context (C1 a b,C2 a b), we can derive either of the two:

axiom д1 a : FC a ∼ [FC1
a]

axiom д2 a : FC a ∼ [FC2
a]

Yet, depending on the choice, different programs are accepted. For

example, from the given constraints {C1 a b,C2 a c,C [a] [b]} we
can derive (b ∼ c ) if д1 is available; the same does not hold for д2.

Even worse, the choice of the axiom affects the compatibility of

the instance with other instances for the same class. To support

modular compilation, we cannot optimise the choice by taking the

rest of the program into account.

For these reasons, our Unambiguous Witness Condition rejects

programs with such ambiguity. Another solution would be for the
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programmer to manually resolve the ambiguity by expressing a

preference.

6.3 Type Substitution Property
Our system satisfies the type substitution property.

Theorem 6.5. If I ; Γ ⊢tm e : ∀a.σ and Γ ⊢ty τ , then I ; Γ ⊢tm e : [τ/a]σ .

In short, a type system satisfies the type substitution property

iff typing a term e with type ∀a.σ implies that we can also type it

with the instantiated type [τ/a]σ .
Chakravarty et al. [1] used the following example to compare

three systems (the system implemented by the Hugs compiler, the

system implemented by GHC, and a system designed by Stuckey

and Sulzmann [30]) with respect to whether they satisfy this prop-

erty.

class C a b | a → b where { foo :: a → b }
instance C Bool Int where { foo = . . . }

Three possible signatures for function bar are:

bar :: C a b ⇒ a → b (1: most general type)

bar :: C Bool b ⇒ Bool → b (2: substitution instance)

bar :: Bool → Int (3: apply the fd)

bar = foo

All three signatures are accepted by the system of Stuckey and Sulz-

mann, which is based on Constraint Handling Rules. Yet, signature

(2) is rejected by both GHC and Hugs, which use a dictionary-based

translation to an explicitly-typed language based on System F. Our

system accepts all three signatures.

As far as we know, our system is the first with functional depen-

dencies to satisfy the type substitution property, while translating

to a typed intermediate language.

6.4 Algorithm Soundness
The algorithm performs two tasks at once: type inference and

elaboration into System FC. It is sound on both accounts.

Firstly, the type inference task is sound.

Theorem 6.6 (Soundness of Type Inference). If ⊢pgm pgm⇝ decl,
then ⊢pgm pgm.

Secondly, the elaboration produces well-typed System FC code.

Theorem 6.7 (Preservation of Typeability Under Elaboration). If
⊢pgm pgm⇝ decl, then ⊢fcpgm decl.

Moreover, to be type safe, System FC requires the consistency

of the axiomatic equational theory. This property follows from the

Compatibility Condition:

Theorem 6.8 (Consistency of Elaborated Programs). If pgm sat-
isfies the Compatibility Condition and ⊢pgm pgm ⇝ decl, then the
top-level typing environment of decl is consistent (according to the
definition of System FC consistency [31]).

6.5 Ambiguity
Following the Haskell tradition, we also require that unconditionally
ambiguous type signatures are rejected, since the runtime behavior

of terms that inhabit them is not well-specified. Checking signatures

for ambiguity is straightforward:

Theorem 6.9 (Non-ambiguous Types). Let there be a (well-scoped)
type σ = ∀a.π ⇒ τ . Iff fv (π ) ⊆ dom(det (fixed (τ ),π )) ∪ fixed (τ ),
then σ is unambiguous.

Function fixed (·) computes the set of fixed variables of a monotype:

fixed (a) = {a} fixed (τ1 τ2) = fixed (τ1) ∪ fixed (τ2)
fixed (T ) = ∅ fixed (F (τ )) = ∅

Intuitively, all type variables appearing in the context π should be

determined from the monotype τ , either by directly appearing in

τ , or indirectly via a functional dependency (or a chain of them).

For instance, given the class declaration class C a b | a → b we

conclude that signature C a b ⇒ a → a is unambiguous because

type variable b is functionally determined by a.

6.6 Principality of Types
The specification of Section 4 has the principal type property:

Theorem 6.10 (Principal Types). If e is well-typed, then there exists
a type σ0 (the principal type), such that I ; Γ ⊢tm e : σ0 and, for all σ
such that I ; Γ ⊢tm e : σ , we have that I |= σ0 ⪯ σ .

Here relation I |= σ0 ⪯ σ defines type subsumption:

I , [T/b]π 2 |= π 1,τ1 ∼ [T/b]τ2 T fresh type constructors

I |= (∀a.π 1 ⇒ τ1) ⪯ (∀b .π 2 ⇒ τ2)
(⪯)

Moreover, without introducing further formal notation, we state

that type inference derives the principal type:

Theorem 6.11 (Inference Computes Principal Types). The type
inference of Section 5 computes only principal types.

6.7 Coherence
Another crucial property of our system is coherence: every differ-

ent valid type derivation for a program should lead to a resulting

program that has the same dynamic semantics. To ensure this, it is

sufficient to restrict ourselves to non-overlapping instances:

Definition 6.12 (Non-overlapping Instances). Any two instance

heads (TC u1) and (TC u2) for the same class should not overlap

(∄θ .θ (u1) = θ (u2)).

6.8 Completeness
Finally, we conjecture that our algorithm is complete with respect

to the declarative type system for programs that satisfy the Termi-

nation and Unambiguous Witness Conditions.

Conjecture 6.13 (Completeness of Type Inference). If ⊢pgm pgm,
then ⊢pgm pgm⇝ decl.

7 Related Work
Functional Dependencies Functional dependencies were intro-

duced in Haskell’s class system by Jones [15], and its first sound and

decidable type inference has been given by Duck et al. [4]. Follow-

up work by Sulzmann et al. [32] formalized functional dependencies

in terms of Constraint Handling Rules [6], and thoroughly studied

several extensions, including multi-range functional dependencies

and weakened variants of the coverage condition.

Non-Functional Improvement Our work treats functional de-

pendencies as type-level functions, as originally intended by Jones

[15]. Alternatively, one can view functional dependencies as a more

general mechanism for guiding type inference, e.g., as asked for

in GHC feature request #8634. Under this interpretation, the do-

main of a functional dependency does not necessarily determine

its image; the result can also be partially determined. This fits with
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Jones’ more general theory of improvement [14]. A flexible system

for improvement was presented by Stuckey and Sulzmann [30],

where the programmer can extend type inference, including par-

tial improvements, directly through Constraint Handling Rules. It

is an open question how to integrate this approach with a typed

intermediate language.

Type Families Functional Dependencies are most closely related

to associated type synonyms [1, 22, 25] and our formalisation is

based on theirs. This enables a more direct comparison and inte-

gration of both features in future work.

Our Compatibility Condition is based on that of Eisenberg et al.

[5] for open type families, which relaxes the non-overlapping check

of Schrijvers et al. [22].

Injective Associated Type Synonyms Stolarek et al. [29] pro-

posed injectivity annotations for type families, which closely re-

semble functional dependencies in both syntax and semantics: to

indicate that a type family with result type b is injective in the i-th
argument ai a user can add an annotation b → ai . They introduce

a new System FC coercion form to witness injectivity. Our elabora-

tion does not need this new form, as the type class dictionary serves

to hold the witness; this approach could be used for the injectivity

of associated type synonyms too.

Expanding on an earlier sketch by Schrijvers and Sulzmann [24],

Serrano et al. [26] discuss an approach for elaborating type classes

into type families augmented with dictionaries. They use injectivity

annotations to elaborate functional dependencies.

8 Conclusion
This paper has tackled a number of important open challenges con-

cerning functional dependencies: We have provided a declarative

type system that explicitly reconstructs the implicit function that

witnesses the functional dependency. Alongside with the declara-

tive type system we have presented a type inference algorithm that

uses the same building blocks as that of associated type synonyms

and the first elaboration of functional dependencies into a typed

intermediate language, System FC.

We believe that our work enables the proper integration of func-

tional dependencies in Haskell’s ecosystem of advanced type-level

features. In future work feature requests like #11534 can be ad-

dressed, and the reconstructed witness function can be exposed to

the user for explicit use.

A Additional Judgments
In this section we present some additional judgments which we

omitted from our main presentation.

A.1 Type Well-formedness

Γ ⊢ty σ Type Well-formedness

a ∈ Γ

Γ ⊢ty a
WfVar

Γ ⊢ty T
WfCon

Γ ⊢ty ρ Γ ⊢ct Q

Γ ⊢ty Q ⇒ ρ
WfQual

Γ ⊢ty τi

Γ ⊢ty F (τ )
WfFam

Γ ⊢ty τ1 Γ ⊢ty τ2

Γ ⊢ty τ1 τ2
WfApp

Γ,a ⊢ty σ a < fv (Γ)

Γ ⊢ty ∀a.σ
WfAll

Γ ⊢ct Q Constraint Well-formedness

Γ ⊢ty τ1 Γ ⊢ty τ2

Γ ⊢ct τ1 ∼ τ2
WfEq

Γ ⊢ty τi

Γ ⊢ct TC τ
WfCls

A.2 Value Binding Typing

I ; Γ1 ⊢val val : Γ2 Value Binding Typing

I ; Γ ⊢tm e : σ

I ; Γ ⊢val (x = e ) : [x : σ ]
Val

A.3 Program Typing
⊢pgm pgm Program Typing

I = Ic , Ii Γ = Γc , Γv I ; Γ ⊢cls cls : Ic ; Γc
Ic ; Ii ; Γ ⊢inst inst : Ii I ; Γ ⊢val val : Γv

⊢pgm cls; inst; val
Pgm

A.4 Match Context Bindings
Throughout the paper we have denoted the evidence and typing

bindings of a match context E as PE and ΓE, respectively. Function
binds(·) below illustrates how the bindings can be extracted from

a match context:

binds(E) = Γ; P Bindings of Match Contexts

binds(□) = •; •

binds(case d of p → E) = (b, ( f : υ), Γ); ((c : ψ ), (d : τ ), P )

where p ≡ KTC b (c : ψ ) (d : τ ) ( f : υ)
Γ; P = binds(E)

A.5 Type Translation

Γ ⊢ty σ ⇝ υ Elaboration of Types

a ∈ Γ

Γ ⊢ty a⇝ a
E_TyVar

Γ,a ⊢ty σ ⇝ υ a < Γ

Γ ⊢ty ∀a.σ ⇝ ∀a.υ
E_TyAll

Γ ⊢eq ϕi ⇝ ψi Γ ⊢cc πi ⇝ υi Γ ⊢ty τ ⇝ υ

Γ ⊢ty (ϕ,π ) ⇒ τ ⇝ ψ ⇒ υ → υ
E_TyQual

Γ ⊢ty τ1 ⇝ υ1 Γ ⊢ty τ2 ⇝ υ2

Γ ⊢ty τ1 τ2 ⇝ υ1 υ2
E_TyApp

Γ ⊢ty T ⇝ T
E_TyCon

Γ ⊢ty τi ⇝ υi

Γ ⊢ty F (τ )⇝ F (υ)
E_TyFam

A.6 Constraint Translation
Γ ⊢cc π ⇝ υ Elaboration of Class Constraints

Γ ⊢ty τi ⇝ υi

Γ ⊢cc TC τ ⇝ TTC υ
E_ClsCt

Γ ⊢eq ϕ ⇝ ψ Elaboration of Equality Constraints

Γ ⊢ty τ1 ⇝ υ1 Γ ⊢ty τ2 ⇝ υ2

Γ ⊢eq (τ1 ∼ τ2)⇝ (υ1 ∼ υ2)
E_EqCt
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A.7 Constraint Entailment
P ⊢E C⇝∗ C; θ ;η Constraint Entailment

P ⊢E C⇝
∗ C; •; •

StopE

P ⊢E Q ⇝ C1;θ1;η1 P ⊢E θ1 (C),C1 ⇝
∗ C2;θ2;η2

P ⊢E C,Q ⇝
∗ C2; (θ2 · θ1); (η2 · η1)

StepE

A.8 Value Binding Translation
Relation P ; Γ ⊢val val : Γv ⇝ decl performs type inference (and

elaboration into System FC) for top-level bindings.

P ; Γ ⊢val val : Γv ⇝ decl Value Binding Elaboration

Γ ⊢tm e : τ ⇝ t | P1;E1
P ⊢E (P1, E1)⇝

! (P2, E2);θ ;η a = fuv (P2, E2,θ (τ ))
σ = ∀a.(erase(E), erase(P)) ⇒ θ (τ ) Γ ⊢ty σ ⇝ υ

P ; Γ ⊢val (x = e ) : [x : σ ]⇝ let x : υ = Λa.ΛE2.λP2.θ (η(t ))
E_Val

To stay in line with the primary goal of functional dependencies,

type improvement [14], once we have inferred the type of the bind-

ing we perform simplification, via constraint entailment (function

erase(·) removes all evidence annotations from either class con-

straints P or equality constraints E).

Notice that, for simplicity, we have considered only top-level

bindings without type signatures but it is extremely straightforward

to allow explicit type annotations. A top-level binding val ≡ (x ::

σ ) = e can be handled by relation P ; Γ ⊢tm e : σ ⇝ t , given in

Section 5.6.2:

P ; Γ ⊢tm e : σ ⇝ t Γ ⊢ty σ ⇝ υ

P ; Γ ⊢val (x :: σ = e ) : Γv ⇝ let x : υ = t
E_ValAnn

A.9 Program Translation

⊢pgm pgm⇝ decl Program Elaboration

Γ = Γc , Γv Γ ⊢cls cls⇝ declc | Γc
P ; Γ ⊢inst inst ⇝ decli | P P ; Γ ⊢val val : Γv ⇝ declv

⊢pgm cls; inst; val⇝ declc ; decli ; declv
E_Pgm

A.10 Poly-kinded, Generic Type Projections
Even though we omitted kinds from our main presentation for

brevity, it is quite straightforward to extend the system of Section 4

with kind checking (quite cumbersome though).

More importantly, if we further extend the system with kind
polymorpism [36] – which is also straightforward – there is no need

to axiomatize the projection functions we presented in Section 4.1.4

for each data type.

Instead, we can perform type projection generically, using only

two user-defined kind-polymorphic type families L and R, along
with two axioms:

type L : ∀κ1 κ2. (a : κ1) → κ2
type R : ∀κ1 κ2. (a : κ1) → κ2

axiom projL : L ((u1 : κ2 → κ1) (u2 : κ2)) ∼ u1
axiom projR : R ((u1 : κ2 → κ1) (u2 : κ2)) ∼ u2

For example, instead of the axioms Fst (a,b) ∼ a and Snd (a,b) ∼ b,
we can extract the first and the second component of a tuple type

τ as follows:

Fst τ ≡ R (L τ )
Snd τ ≡ R τ

B System FC Type System
B.1 Coercion Typing

P ; Γ ⊢co γ : ψ Coercion Typing

(c : ψ ) ∈ P

P ; Γ ⊢co c : ψ
CoVar

(д a : υ1 ∼ υ2) ∈ P Γ ⊢ty υ

P ; Γ ⊢co д υ : [υ/a]υ1 ∼ [υ/a]υ2
CoAx

Γ ⊢ty υ

P ; Γ ⊢co ⟨υ⟩ : υ ∼ υ
CoRefl

P ; Γ ⊢co γ : υ1 ∼ υ2

P ; Γ ⊢co sym γ : υ2 ∼ υ1
CoSym

P ; Γ ⊢co γ1 : υ1 ∼ υ2 P ; Γ ⊢co γ2 : υ2 ∼ υ3

P ; Γ ⊢co γ1 o

9
γ2 : υ1 ∼ υ3

CoTrans

Γ ⊢ty υ1 υ3 P ; Γ ⊢co γ1 : υ1 ∼ υ2 P ; Γ ⊢co γ2 : υ3 ∼ υ4

P ; Γ ⊢co γ1 γ2 : υ1 υ3 ∼ υ2 υ4
CoApp

P ; Γ ⊢co γ : υ1 υ2 ∼ υ3 υ4

P ; Γ ⊢co left γ : υ1 ∼ υ3
CoL

P ; Γ ⊢co γ : υ1 υ2 ∼ υ3 υ4

P ; Γ ⊢co right γ : υ2 ∼ υ4
CoR

Fn ∈ Γ P ; Γ ⊢co γ : υ1 ∼ υ2
n

Γ ⊢ty υ1
n

P ; Γ ⊢co Fn (γn ) : F (υ1n ) ∼ F (υ2n )
CoFam

P ; Γ,a ⊢co γ : υ1 ∼ υ2 Γ,a ⊢ty υ1 a < Γ

P ; Γ ⊢co ∀a.γ : ∀a.υ1 ∼ ∀a.υ2
CoAll

P ; Γ ⊢co γ1 : ∀a.υ1 ∼ ∀a.υ2
P ; Γ ⊢co γ2 : υ3 ∼ υ4 Γ ⊢ty υ3

P ; Γ ⊢co γ1[γ2] : [υ3/a]υ1 ∼ [υ4/a]υ2
CoInst

Γ ⊢pr ψ P ; Γ ⊢co γ : υ1 ∼ υ2

P ; Γ ⊢co ψ ⇒ γ : (ψ ⇒ υ1) ∼ (ψ ⇒ υ2)
CoQual

P ; Γ ⊢co γ1 : (ψ ⇒ υ1) ∼ (ψ ⇒ υ2) P ; Γ ⊢co γ2 : ψ

P ; Γ ⊢co γ1@γ2 : υ1 ∼ υ2
CoQInst

B.2 Type Well-formedness

Γ ⊢ty υ Type Well-formedness

a ∈ Γ

Γ ⊢ty a
TyVar

Γ ⊢pr ψ Γ ⊢ty υ

Γ ⊢ty ψ ⇒ υ
TyQual

T ∈ Γ

Γ ⊢ty T
TyCon

Γ ⊢ty υ1 Γ ⊢ty υ2

Γ ⊢ty υ1 υ2
TyApp

Γ,a ⊢ty υ a < fv (Γ)

Γ ⊢ty ∀a.υ
TyAll

Γ ⊢ty υi

Γ ⊢ty FTCi (υ)
TyFam

Γ ⊢pr ψ Proposition Well-formedness

Γ ⊢ty υ1 Γ ⊢ty υ2

Γ ⊢pr υ1 ∼ υ2
Prop

B.3 Term Typing

P ; Γ ⊢tm t : υ Term Typing
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(x : υ) ∈ Γ

P ; Γ ⊢tm x : υ
TmVar

(d : τ ) ∈ P

P ; Γ ⊢tm d : υ
TmD

(K : υ) ∈ Γ

P ; Γ ⊢tm K : υ
TmCon

P ; Γ ⊢tm t : υ1 P ; Γ ⊢co γ : υ1 ∼ υ2

P ; Γ ⊢tm t ▷ γ : υ2
TmCast

a < Γ P ; Γ,a ⊢tm t : υ

P ; Γ ⊢tm Λa.t : ∀a.υ
(∀I )

P ; Γ ⊢tm t : ∀a.υ
Γ ⊢ty υ1

P ; Γ ⊢tm t υ : [υ1/a]υ
(∀E )

P ; Γ ⊢tm t1 : υ2 → υ1 P ; Γ ⊢tm t2 : υ2

P ; Γ ⊢tm t1 t2 : υ1
(→E )

x < dom(Γ) Γ ⊢ty υ1 P ; Γ,x : υ1 ⊢tm t : υ2

P ; Γ ⊢tm λ(x : υ1).t : υ1 → υ2
(→I )

c < dom(P ) Γ ⊢pr ψ
P ; Γ, c : ψ ⊢tm t : υ

P ; Γ ⊢tm Λ(c : ψ ).t : ψ ⇒ υ
(⇒Iψ )

P ; Γ ⊢tm t : ψ ⇒ υ
P ; Γ ⊢co γ : ψ

P ; Γ ⊢tm t γ : υ
(⇒Eψ )

x < dom(Γ)
P ; Γ,x : υ1 ⊢tm t1 : υ1 Γ ⊢ty υ1 P ; Γ,x : υ1 ⊢tm t2 : υ2

P ; Γ ⊢tm (let x : υ1 = t1 in t2) : υ2
TmLet

P ; Γ ⊢tm t1 : υ1 P ; Γ ⊢p p → t2 : υ1 → υ2

P ; Γ ⊢tm case t1 of p → t2 : υ2
TmCase

P ; Γ ⊢p p → t : υ1 → υ2 Pattern Typing

(K : ∀ab
′
.ψ ⇒ τ → υ → T a) ∈ Γ θ = [τa/a,b

′
/b]

b < Γ c,d < dom(P ) x < dom(Γ)

P , (c : θ (ψ )), (d : θ (τ )); Γ,b, (x : θ (υ)) ⊢tm t : υ2

P ; Γ ⊢p K b (c : θ (ψ )) (d : θ (τ )) (x : θ (υ)) → t : T τa → υ2
Pat

B.4 Declaration & Program Typing

P1; Γ1 ⊢d decl : P2; Γ2 Declaration Typing

Γ,a,b ⊢pr ψi Γ,a,b ⊢ty υj

P ; Γ ⊢d (data T a where K : ∀ab .ψ ⇒ υ → T a) : •; •
Data

P ; Γ ⊢d type F (a) : •; •
Family

Γ,a ⊢ty ui Γ,a ⊢ty υ д < dom(P )

P ; Γ ⊢d (axiom д a : F (u) ∼ υ) : [д a : F (u) ∼ υ]; •
Axiom

P ; Γ,x : υ ⊢tm t : υ x < dom(Γ)

P ; Γ ⊢d (let x : υ = t ) : •; [x : υ]
Value

⊢fcpgm decl Program Typing

P ; Γ ⊢d decl : P ; Γ

⊢fcpgm decl
Program

C Constraint Schemes, CHRs and System FC
In this section we informally illustrate that both our specification

(Section 4) and our elaboration (Section 5) semantics are compatible

with the Constraint Handling Rules of Sulzmann et al. [32].

C.1 Class CHRs
Let there be a class declaration

class ∀ab .π ⇒ TC a | fd
1
, . . . , fdm

According to Sulzmann et al., it gives rise to two kinds of constraint

handling rules:

Class CHR. The class chr takes the form rule TC a =⇒ π , that
is, almost the same as Scheme CS1a:

SCπ = ∀a.TC a ⇒ θ (π ) ∀π

where θ = det (a,π ). The main difference between the two is the

substitution θ , which essentially replaces all skolem variables b in

π with their (known) counterparts.
9

The CHR has a direct interpretation into System FC, as a match

context:

E = case (d : TTC a) of { . . . }

Within the scope of E, both b and π are available. The elaboration of

the constraint scheme is slightly more complex. Matching against

all superclass constraints π recursivelymakes available all coercions

that connect b with a. Composed, they can be used to cast the type

of the superclass constraints to θ (π ). As an example, consider the

following definitions:

class C a b | a → b
class C a b ⇒ D a

The corresponding constraint scheme is

∀a.D a ⇒ C a (FC a)

and is witnessed by the following function:

f = Λa.λ(d1 : TD a).case d1 of
TD b (d2 : TC a b) → case d2 of

TC (c : FC a ∼ b) → d2 ▷ ⟨TC ⟩ ⟨a⟩ (sym c )

This explains why we strictly require that b ⊆ dom(θ ): if the re-
striction does not hold, there are superclass constraint schemes

that cannot be elaborated in System FC. Such declarations are am-

biguous, so we consider it a reasonable restriction.

Functional Dependency CHRs. For each functional dependency

fdi ≡ ai1 . . . ain → ai0 , we have rule TC a, TC θ (b) =⇒ ai0 ∼ bi0 ,
where

θ (bj ) =

{
aj , if j ∈ {i1, . . . , in }
bj , otherwise

This rule is derivable using Scheme CS1b twice as follows:

TC a

FTCi a
in ∼ ai0

1b

ai0 ∼ FTCi a
in

Sym

TC θ (b)

FTCi θ (b
in
) ∼ θ (bi0 )

1b

FTCi a
in ∼ bi0

θ

ai0 ∼ bi0

o

9

The System FC counterpart of this constraint scheme is the combi-

nation of two match contexts

E = case (d1 : TTC a) of
TTC . . . c1 · · · → case (d2 : TTC θ (b)) of

TTC . . . c2 · · · → □

9
If we restrict ourselves to cases where b ⊆ dom(θ ), both our specification and the

inference (with elaboration) are well-behaved.
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and a local coercion γ = (sym ci1) o

9
ci2. Notice the importance of

the match context, for the well-scopedness of the coercion: sub-

coercions ci1 and ci2 are available only within the scope of the

match context.

C.2 Instance CHRs
Let there be an instance declaration

instance ∀ab .π ⇒ TC u

According to Sulzmann et al., it also gives rise to two kinds of

constraint handling rules:

Instance CHR. The instance rule takes the form

rule TC u ⇐⇒ π

which, according to CHR semantics, means that instead of proving

TC u, one suffices to prove π . That is, we can always derive TC u
from π . This directly corresponds to Scheme CS2a:

SIπ = ∀a.θ (π ) ⇒ TC u

where θ = det (a,π ). The interpretation of this scheme is the ex-

pected dictionary constructor, where b are appropriately instan-

tiated. For a system that does not support the type substitution
property, this wouldn’t necessarily be accepted, since the quantifi-

cation over b is non-parametric. Yet, as we illustrated in Section 6.3,

our system does, and our instantiation is (by construction) the

expected.

Instance Improvement CHRs. For each functional dependency

fdi ≡ ai1 . . . ain → ai0 , we have rule TC θ ′(b) =⇒ ui0 ∼ bi0 ,
where

θ ′(bj ) =

{
uj , if j ∈ {i1, . . . , in }
bj , otherwise

We can derive this rule, by combining Schemes CS1b and CS2b:

FTCi u
in ∼ θ (ui0 )

2b

θ (ui0 ) ∼ FTCi u
in

Sym

TC θ ′(b)

FTCi θ
′(b

in
) ∼ θ ′(bi0 )

1b

FTCi u
in ∼ bi0

θ ′

θ (ui0 ) ∼ bi0

o

9

The corresponding System FC term has exactly the same structure: a

local pattern match (encoding Scheme CS1b) against the dictionary

of type (TC θ ′(b)) in order to expose equality FTCi u
in ∼ bi0 , which

is then combined with top-level axiom θ (ui0 ) ∼ FTCi u
in

(from

Scheme CS2b) to produce θ (ui0 ) ∼ bi0 .
Notice that similarly to the Instance CHR, we do not actually

prove ui0 ∼ bi0 , but the refined θ (ui0 ) ∼ bi0 .
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