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Abstract

As popularity of algebraic effects and handlers increases, so does a demand for their efficient execu-
tion. Eff, an ML-like language with native support for handlers, has a subtyping-based effect system
on which an effect-aware optimizing compiler could be built. Unfortunately, in our experience,
implementing optimizations for Eff is overly error-prone because its core language is implicitly-
typed, making code transformations very fragile.

To remedy this, we present an explicitly-typed polymorphic core calculus for algebraic effect
handlers with a subtyping-based type-and-effect system. It reifies appeals to subtyping in explicit
casts with coercions that witness the subtyping proof, quickly exposing typing bugs in program
transformations.

Our typing-directed elaboration comes with a constraint-based inference algorithm that turns an
implicitly-typed Eff-like language into our calculus. Moreover, all coercions and effect information
can be erased in a straightforward way, demonstrating that coercions have no computational content.
Additionally, we present a monadic translation from our calculus into a pure language without
algebraic effects or handlers, using the effect information to introduce monadic constructs only where
necessary.
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1 Introduction

Algebraic effect handlers (Plotkin & Power, 2003; Plotkin & Pretnar, 2013) are quickly
maturing from a theoretical model to a practical language feature for user-defined computa-
tional effects. Yet, in practice they still incur a significant performance overhead compared
to native effects.

Our earlier efforts (Pretnar et al., 2017) to narrow this gap with an optimising compiler
from Eff (Bauer & Pretnar, 2015) to OCaml showed promising results, in some cases
reaching even the performance of hand-tuned code, but were very fragile and have been
postponed until a more robust solution is found. We believe the main reason behind these
and other1 problems lies in the complexity of subtyping in combination with the implicit

1 See issues #11 and #16 at https://github.com/matijapretnar/eff/issues/.
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typing of Eff’s core language, further aggravated by the “garbage collection” (Pottier,
2001) of subtyping constraints (see Section 8).

For efficient compilation, one must avoid the poisoning problem (Wansbrough & Pey-
ton Jones, 1999), where unification forces a pure computation to take the less precise
impure type of the context (e.g. a pure and an impure branch of a conditional both receive
the same impure type). Since this rules out existing (and likely simpler) effect systems for
handlers based on row-polymorphism (Leijen, 2014; Hillerström & Lindley, 2016; Lindley
et al., 2017), we propose a polymorphic explicitly-typed calculus based on subtyping. More
specifically, our contributions are as follows:

• First, in Section 3 we present IMPEFF, a polymorphic implicitly-typed calculus
for algebraic effects and handlers with a subtyping-based type-and-effect system.
IMPEFF is essentially a (desugared) source language as it appears in the compiler
frontend of a language like Eff.

• Next, Section 4 presents EXEFF, the core calculus, which combines explicit System
F-style polymorphism with explicit coercions for subtyping in the style of Breazu-
Tannen et al. (1991). This calculus comes with a type-and-effect system, a small-step
operational semantics and a proof of type-safety.

• Section 5 specifies the typing-directed elaboration of IMPEFF into EXEFF and presents
a type inference algorithm for IMPEFF that produces the elaborated EXEFF term as
a by-product. It also establishes that the elaboration preserves typing, and that the
algorithm is sound with respect to the specification and yields principal types.

• Finally, we present two different backends for EXEFF:

— Section 6 defines SKELEFF, which is a variant of EXEFF without effect in-
formation or coercions. SKELEFF is also representative of Multicore OCaml’s
support for algebraic effects and handlers (Dolan et al., 2015), which is a possible
compilation target of Eff. By showing that the erasure from EXEFF to SKELEFF

preserves semantics, we establish that EXEFF’s coercions are computationally
irrelevant. To enable erasure, EXEFF annotates its types with (type) skeletons,
which capture the erased counterpart and are, to our knowledge, a novel contri-
bution.

— Section 7 defines NOEFF, which is an alternative backend of EXEFF which tracks
in its type system whether, but not which, effects can happen. This backend
is representative of pure OCaml or Haskell code where effectful computations
are represented with a free monad implementation. Because NOEFF lacks effect
polymorphism, our type-preserving elaboration from EXEFF to NOEFF needs to
introduce unsafe coercions, though we claim that elaborated programs never get
stuck.

• Our paper comes with two software artefacts: an ongoing implementation2 of a
compiler from Eff to OCaml with EXEFF at its core, and an Abella mechanisation3

2 https://github.com/matijapretnar/eff/tree/explicit-effect-subtyping
3 https://github.com/matijapretnar/proofs/tree/jfp-2019/
explicit-effect-subtyping
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of Theorems 4.2, 5.1, 6.2, 6.3, 7.1, 7.2 and 7.4. Remaining theorems all concern the
inference algorithm, and their proofs closely follow (Pretnar, 2014).

This article is an extended version of a paper that appeared at ESOP 2018 (Saleh et al.,
2018). There are two main novelties. Firstly, we have altered the coercion forms available
in EXEFF. Previously, it contained a range of projection forms to support an operational
semantics that never matches on the coercions. Instead, we now do match on the coercions
in the operational semantics, and as a consequence no longer need the projections. This not
only reduces the size of the language but also has a considerable simplifying impact on the
metatheory proofs in Abella. Moreover, it reduces the gap between EXEFF and NOEFF.
Secondly and most importantly, Section 7, on the elaboration of EXEFF to NOEFF, is
entirely new.

2 Overview

This section presents an informal overview of the EXEFF calculus, and the main issues
with elaborating to and erasing from it.

2.1 Algebraic Effect Handlers

The main premise of algebraic effects is that impure behaviour arises from a set of op-
erations such as Get and Set for mutable store, Read and Print for interactive input
and output, or Raise for exceptions (Plotkin & Power, 2003). This allows generalizing
exception handlers to other effects, to express backtracking, co-operative multithreading
and other examples in a natural way (Plotkin & Pretnar, 2013; Bauer & Pretnar, 2015).

Assume operations Tick : Unit→ Unit and Tock : Unit→ Unit that take a unit value
as a parameter and yield a unit value as a result. Unlike special built-in operations, these
operations have no intrinsic effectful behaviour, though we can give one through handlers.
For example, the handler

{Tickxk 7→ (Print“tick”;k unit),

Tockxk 7→ Print“tock”}

replaces all calls of Tick by printing out “tick” and similarly for Tock. But there is one
significant difference between the two cases. Unlike exceptions, which always abort the
evaluation, operations have a continuation waiting for their result. It is this continuation
that the handler captures in the variable k and potentially uses in the handling clause. In the
clause for Tick, the continuation is resumed by passing it the expected unit value, whereas
in the clause for Tock, the operation is discarded. Thus, if we handle a computation
emitting the two operations, it will print out “tick” until a first “tock” is printed, after
which the evaluation stops. For a more thorough explanation of algebraic effect handlers,
we refer the reader to Pretnar’s tutorial (Pretnar, 2015), which is conveniently based on a
calculus with essentially the same term-level syntax and operational semantics (but a far
less involved type system).
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2.2 Elaborating Subtyping

Consider the computation do x ← Tick unit; f x and assume that f has the function
type Unit→ Unit ! {Tock}, taking unit values to unit values and perhaps calling Tock

operations in the process. The whole computation then has the type Unit ! {Tick,Tock}
as it returns the unit value and may call Tick and Tock.

The above typing implicitly appeals to subtyping in several places. For instance, Tick unit
has type Unit ! {Tick} and f x type Unit ! {Tock}. Yet, because they are sequenced with
do, the type system expects them to have the same set of effects. The discrepancies are
implicitly reconciled by the subtyping which admits both {Tick} 6 {Tick,Tock} and
{Tock}6 {Tick,Tock}.

We elaborate the IMPEFF term into the explicitly-typed core language EXEFF, where
such implicit appeals to subtyping turn into explicit casts using coercions:

do x← ((Tick unit)B γ1);( f x)B γ2

A coercion γ is a witness for a subtyping A ! ∆6 A′ ! ∆′ and can be used to cast a term c of
type A ! ∆ to a term cB γ of type A′ ! ∆′. In the above term, γ1 and γ2 respectively witness
Unit ! {Tick}6 Unit ! {Tick,Tock} and Unit ! {Tock}6 Unit ! {Tick,Tock}.

At this point, the reader might wonder why coercions can influence value types, and not
just effect sets. This design allows us to flexibly cast types of higher-order functions and
handlers which would otherwise not be possible. For example, we can use a coercion for
δ3 6 δ1 to construct value type coercions that witnesses

((α → α
′ ! δ1)→ α

′′ ! δ2)6 ((α → α
′ ! δ3)→ α

′′ ! δ2)

or

(α ′ ! δ1V α
′′ ! δ2)6 (α ′ ! δ3V α

′′ ! δ2)

2.3 Polymorphic Subtyping for Types and Effects

The above basic example only features monomorphic types and effects. Yet, our calculus
also supports polymorphism, which makes it considerably more expressive. For instance
the type of f in let f = (fun g 7→ g unit) in . . . is generalised to:

∀α,α ′.∀δ ,δ ′.α 6 α
′⇒ δ 6 δ

′⇒ (Unit→ α ! δ )→ α
′ ! δ

′

This polymorphic type scheme follows the qualified types convention (Jones, 1992) where
the type (Unit→ α ! δ )→ α ′ ! δ ′ is subjected to several qualifiers, in this case α 6 α ′

and δ 6 δ ′. The universal quantifiers on the outside bind the type variables α and α ′, and
the effect set variables δ and δ ′.

The elaboration of f into EXEFF introduces explicit binders for both the quantifiers and
the qualifiers, as well as the explicit casts where subtyping is used.

Λα.Λα ′.Λδ .Λδ ′.Λ(ω :α 6 α ′).Λ(ω ′ :δ 6 δ ′).

fun (g :Unit→ α !δ ) 7→((gunit)B(ω !ω ′))
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Here the binders for qualifiers introduce coercion variables ω between pure types and ω ′

between operation sets, which are then combined into a computation coercion ω ! ω ′ and
used for casting the function application (gunit) to the expected type.

Suppose that h has type Unit→ Unit !{Tick} and f h type Unit !{Tick,Tock}. In
the EXEFF calculus the corresponding instantiation of f is made explicit through type and
coercion applications

f UnitUnit{Tick}{Tick,Tock}γ1 γ2 h

where γ1 needs to be a witness for Unit6 Unit and γ2 for {Tick}6 {Tick,Tock}.

2.4 Guaranteed Erasure with Skeletons

One of our main requirements for EXEFF is that its effect information and subtyping can
be easily erased. The reason is twofold. Firstly, we want to show that neither plays a role
in the runtime behaviour of EXEFF programs. Secondly and more importantly, we want to
use a conventionally typed (System F-like) functional language as a backend for the Eff
compiler.

At first, erasure of both effect information and subtyping seems easy: simply drop that
information from types and terms. But by dropping the effect variables and subtyping
constraints from the type of f , we get ∀α,α ′.(Unit→ α)→ α ′ instead of the expected
type ∀α.(Unit → α) → α . In our naive erasure attempt we have carelessly discarded
the connection between α and α ′. A more appropriate approach to erasure would be to
unify the types in dropped subtyping constraints. However, unifying types may reduce the
number of type variables when they become instantiated, so corresponding binders need to
be dropped, greatly complicating the erasure procedure and its meta-theory.

Fortunately, there is an easier way by tagging all bound type variables with skeletons,
which are bare-bones types without effect information. For example, the skeleton of a
function type A→ B ! ∆ is τ1→ τ2, where τ1 is the skeleton of A and τ2 the skeleton of B.
In EXEFF every well-formed type has an associated skeleton, and any two types A1 6 A2

share the same skeleton. In particular, binders for type variables are explicitly annotated
with skeleton variables ς . For instance, the actual type of f is:

∀ς .∀(α : ς),(α ′ : ς).∀δ ,δ ′.α 6 α
′⇒ δ 6 δ

′⇒ (Unit→ α ! δ )→ α
′ ! δ

′

The skeleton quantifications and annotations also appear at the term-level:

Λς .Λ(α : ς).Λ(α ′ : ς).Λδ .Λδ
′.Λ(ω : α 6 α

′).Λ(ω ′ : δ 6 δ
′). . . .

Now erasure is really easy: we drop not only effect and subtyping-related term formers, but
also type binders and application. We do retain skeleton binders and applications, which
take over the role of (plain) types in the backend language. In terms, we replace types by
their skeletons. For instance, for f we get:

Λς .fun (g : Unit→ ς) 7→ gunit : ∀ς .(Unit→ ς)→ ς
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2.5 Elaboration into a Pure Language

We can drop effectful information only if the targeted language has a native implicit support
for algebraic effects at any type. In a pure functional language, effectful computations that
yield a result of type A are represented with a user-defined type Comp A, which typically
uses one of the known encodings, such as free monads (Kammar et al., 2013; Pretnar et al.,
2017), delimited control (Kiselyov & Sivaramakrishnan, 2016), or continuation-passing
style (Leijen, 2017).

Targeting such a language requires a more careful elaboration. For example, EXEFF

types Int ! {Tick} and Int ! {Tock} are both mapped to a type Comp Int. The same
could be done for the type Int ! /0, but computations of that type are pure and do not
require any encoding, so it is more efficient to avoid the library overhead and map the type
to the pure type Int directly (Leijen, 2017; Pretnar et al., 2017). This difference is the
main complicating factor in the elaboration.

Since the computation return 5 : Int ! /0 is pure, it should be elaborated to 5 of
type Int. But if we take a witness γ for Int 6 Int and γ1 for /0 6 {Tick}, the coerced
computation (return 5)B (γ ! γ1) : Int ! {Tick} should be elaborated to the lifted value
return 5 : Comp Int.

However, it is not simply a matter of replacing each cast with a return. If we further
take a witness γ2 of {Tick}6 {Tick,Tock}, the computation

((return 5)B (γ ! γ1))B (γ ! γ2) : Int ! {Tick,Tock}

also has to be elaborated to return 5 : Comp Int. We will see that this is just one of
the (smaller) issues that stem from the different treatment of pure and impure computation
types, and show how to construct an appropriate elaboration (Section 7.4).

2.6 Outline

The remainder of this article formalizes essentially a compiler pipeline for Eff. Figure 1
depicts this pipeline and annotates the different parts with the sections they are covered in.

Section 5

Section 6

IMPEFF EXEFF

SKELEFF

NOEFF

Section 3 Section 4

Section 7

SOURCE INTERMEDIATE TARGET

Fig. 1: Compiler and section structure
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Section 3: The starting point of the pipeline is IMPEFF, an implicitly-typed calculus for
algebraic effects and handlers with a subtyping-based type-and-effect system. It is the
core of the desugared source language as it appears in the compiler frontend of Eff. We
present its syntax and type system.

Section 4: The heart of the compiler is EXEFF, an intermediate language that is explicitly
annotated with type and effect information. Its main novelty is that it also makes appeals
to subtyping explicit by means of coercions. We present its syntax, type system and
operational semantics.

Section 5: We explain how to elaborate IMPEFF into EXEFF, and provide a type inference
algorithm for IMPEFF that performs this elaboration. The algorithm is constraint-based,
i.e., it consists of two interleaved phases: constraint generation and constraint solving.

Section 6: Towards the end, the compiler forks to support two different compilation tar-
gets. The first compilation target is SKELEFF. This language is modelled after Multicore
OCaml. In particular, it is a statically typed language with built-in support for algebraic
effects, but its type system does not track effects. We provide its syntax and, in the
appendix, also its type system and operational semantics. Also, we explain how to elab-
orate the intermediate EXEFF into the SKELEFF target language. Thanks to the skeleton-
based setup of EXEFF, this elaboration is a fairly straightforward erasure procedure.

Section 7: The second compilation target is NOEFF, a statically typed calculus that dis-
tinguishes in its types between pure and impure computations, but does not track which
operations can happen in impure computations. This models encodings of algebraic
effects in languages without native support. We present its syntax, type system and
operational semantics. Finally, we show how to elaborate EXEFF into NOEFF. This is
much more involved than the straightforward erasure procedure into SKELEFF. Instead
of just throwing away all effect information and coercions, we have to abstract it to
the presence (pure) or absence (impure) of effects. Unfortunately, polymorphism does
not interact well with this abstraction process. We show how to address this problem
by conservatively assuming that polymorphic code is impure and by adding unsafe
coercions to obtain pure instantiations.

3 The IMPEFF Language

This section presents IMPEFF, a basic functional calculus with support for algebraic effect
handlers, which forms the core language of our optimising compiler.

3.1 Syntax

Figure 2 presents the syntax of the source language. There are two main kinds of terms:
(pure) values v and (dirty) computations c, which may call effectful operations. Handlers
h are a subsidiary sort of values. We assume a given set of operations Op, such as Get and
Put. We abbreviate Op1 xk 7→ cOp1 , . . . ,Opn xk 7→ cOpn as [Opxk 7→ cOp]Op∈O , and write O to
denote the set {Op1, . . . ,Opn}.

Similarly, we distinguish between two basic sorts of types: the value types A,B and the
computation types C,D. There are four forms of value types: type variables α , function
types A→ C, handler types CV D and the Unit type. Skeletons τ capture the shape of
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Terms
value v ::= x | unit | fun x 7→ c | h

handler h ::= {return x 7→ cr,Op1 xk 7→ cOp1
, . . . ,Opn xk 7→ cOpn

}
computation c ::= return v | Op v (y.c) | do x← c1;c2

| handle c with v | v1 v2 | let x = v in c

Types & Constraints

skeleton τ ::= ς | Unit | τ1→ τ2 | τ1V τ2

value type A,B ::= α | Unit | A→ C | CV D
qualified type K ::= A | π ⇒ K

polytype S ::= K | ∀ς .S | ∀α :τ.S | ∀δ .S
computation type C,D ::= A !∆

dirt ∆ ::= δ | /0 | {Op}∪∆

simple constraint π ::= A1 6 A2 | ∆1 6 ∆2
constraint ρ ::= π | C 6 D

Fig. 2: IMPEFF Syntax

types, so, by design, their forms are identical. The computation type A ! ∆ is assigned to a
computation returning values of type A and potentially calling operations from the dirt set
∆. A dirt set contains zero or more operations Op and is terminated either by an empty set
or a dirt variable δ . Though we use cons-list syntax, the intended semantics of dirt sets ∆

is that the order of operations Op is irrelevant. That is, ({Op1}∪ ({Op2}∪∆)) denotes the
same dirt as ({Op2}∪ ({Op1}∪∆)). Similarly to all HM-based systems, we discriminate
between value types (or monotypes) A, qualified types K and polytypes (or type schemes)
S. (Simple) subtyping constraints π denote inequalities between either value types or dirts.
We also present the more general form of constraints ρ that includes inequalities between
computation types (as we illustrate in Section 3.2 below, this allows for a single, uniform
constraint entailment relation). Finally, polytypes consist of zero or more skeleton, type or
dirt abstractions followed by a qualified type.

3.2 Typing

Figure 3 presents the typing rules for values and computations, along with a typing-directed
elaboration into our target language EXEFF. In order to simplify the presentation, in this
section we focus exclusively on typing. The parts of the rules that concern elaboration are
highlighted in gray and are discussed in Section 5. In all the rules, we assume a global
signature Σ that captures all defined operations along with their (well-formed) types.

Values Typing for values takes the form Γ `v v : A, and, given a typing environment Γ,
checks a value v against a value type A.

Rule TMVAR handles term variables. Given that x has type (∀ς .α : τ.∀δ .π ⇒ A), we
appropriately instantiate the skeleton (ς ), type (α), and dirt (δ ) variables, and ensure
that the instantiated wanted constraints σ(π) are satisfied, via side condition Γ c̀o σ(π).
Rule TMCASTV allows casting the type of a value v from A to B, if A is a subtype of B
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typing environment Γ ::= ε | Γ,ς | Γ,α : τ | Γ,δ | Γ,x : S | Γ, ω : π

Γ `v v : A v′ Values

(x : ∀ς̄ .∀α : τ.∀δ̄ .π̄ ⇒ A) ∈ Γ

Γ v̀ty B : τ  T σ = [τ ′/ς ,B/α,∆/δ ] Γ c̀o γ : σ(π)

Γ `v x : σ(A) x τ̄
′ T̄ ∆̄ γ̄

TMVAR

Γ `v v : A v′ Γ c̀o γ : A6 B

Γ `v v : B v′ B γ

TMCASTV
Γ `v unit : Unit unit

TMUNIT

Γ,x : A `c c : C c′ Γ v̀ty A : τ  T

Γ `v (fun x 7→ c) : A→ C fun (x : T) 7→ c′
TMTMABS

Γ,x : A `c cr : B ! ∆ c′r Γ v̀ty A : τ  T[
(Op : AOp→ BOp) ∈ Σ Γ,x : AOp,k : BOp→ B ! ∆ `c cOp : B ! ∆ c′Op

]
Op∈O

cres = {return (x : T) 7→ c′r, [Opxk 7→ c′Op]Op∈O}

Γ `v {return x 7→ cr, [Opxk 7→ cOp]Op∈O} : A ! ∆∪O V B ! ∆ cres
TMHAND

Γ `c c : C c′ Computations

Γ `c c : C1 c′ Γ c̀o γ : C1 6 C2

Γ `c c : C2 c′ B γ

TMCASTC

Γ `v v1 : A→ C v′1
Γ `v v2 : A v′2

Γ `c v1 v2 : C v′1 v′2
TMTMAPP

S = ∀ς̄ .α : τ.∀δ̄ .π̄ ⇒ A Γ, ς̄ ,α : τ, δ̄ , ω : π `v v : A v′ Γ,x : S `c c : C c′

Γ `c let x = v in c : C let x = Λς̄ .Λα : τ.Λδ̄ .Λ(ω : π).v′ in c′
TMLET

Γ `v v : A v′

Γ `c return v : A ! /0 return v′
TMRETURN

(Op : AOp→ BOp) ∈ Σ

Γ `v v : AOp v′ Γ,y : BOp `c c : A ! ∆ c′ Γ v̀ty BOp : τ  TOp Op ∈ ∆

Γ `c Op v (y.c) : A ! ∆ Op v′ (y : TOp.c′)
TMOP

Γ `c c1 : A ! ∆ c′1 Γ,x : A `c c2 : B ! ∆ c′2

Γ `c do x← c1;c2 : B ! ∆ do x← c′1;c′2
TMDO

Γ `v v : CV D v′ Γ `c c : C c′

Γ `c handle c with v : D handle c′ with v′
TMHANDLE

Fig. 3: IMPEFF Typing & Elaboration
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Γ c̀o γ : ρ Constraint Entailment

( ω : π) ∈ Γ

Γ c̀o ω : π
COVAR

Γ c̀o 〈Unit〉 : Unit6 Unit
UCOREFL

(α : τ) ∈ Γ

Γ c̀o 〈α〉 : α 6 α
ACOREFL

Γ ∆̀ ∆

Γ c̀o 〈∆〉 : ∆6 ∆
DCOREFL

Γ c̀o γ1 : B6 A Γ c̀o γ2 : C 6 D

Γ c̀o γ1→ γ2 : A→ C 6 B→ D
VCOARR

Γ c̀o γ1 : C2 6 C1 Γ c̀o γ2 : D1 6 D2

Γ c̀o γ1V γ2 : C1V D1 6 C2V D2
VCOHAND

Γ c̀o γ1 : A1 6 A2 Γ c̀o γ2 : ∆1 6 ∆2

Γ c̀o γ1 ! γ2 : A1 ! ∆1 6 A2 ! ∆2
CCOCOMP

Γ c̀o /0∆ : /06 ∆
DCONIL

Γ c̀o γ : ∆1 6 ∆2 (Op : AOp→ BOp) ∈ Σ

Γ c̀o {Op}∪ γ : {Op}∪∆1 6 {Op}∪∆2
DCOOP

Fig. 4: IMPEFF Constraint Entailment

(upcasting). As illustrated by Rule TMTMABS, we omit freshness conditions by adopting
the Barendregt convention (Barendregt, 1981). Finally, Rule TMHAND gives typing for
handlers. It requires that the right-hand sides of the return clause and all operation clauses
have the same computation type (B !∆), and that all operations mentioned are part of the
top-level signature Σ. The result type takes the form A ! ∆∪O V B ! ∆, capturing the
intended handler semantics: given a computation of type A ! ∆∪O , the handler (a) produces
a result of type B, (b) handles operations O , and (c) propagates unhandled operations ∆ to
the output.

Computations Typing for computations takes the form Γ `c c : C, and, given a typing
environment Γ, checks a computation c against a type C.

Rule TMCASTC behaves like Rule TMCASTV, but for computation types. Rule TMLET

handles polymorphic, non-recursive let-bindings. Rule TMRETURN handles return v
computations. Keyword return effectively lifts a value v of type A into a computation of
type A ! /0. Rule TMOP checks operation calls. First, we ensure that v has the appropriate
type, as specified by the signature of Op. Then, the continuation (y.c) is checked. The
side condition Op ∈ ∆ ensures that the called operation Op is captured in the result type.
Rule TMDO handles sequencing. Given that c1 has type A !∆, the pure part of the result
of type A is bound to term variable x, which is brought in scope for checking c2. As we
mentioned in Section 2, all computations in a do-construct should have the same effect set,
∆. Rule TMHANDLE eliminates handler types, just as Rule TMTMAPP eliminates arrow
types.
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Constraint Entailment The specification of constraint entailment takes the form Γ c̀o ρ

and is presented in Figure 4. Notice that we use ρ instead of π , which allows us to capture
subtyping between two value types, computation types or dirts, within the same relation.
Subtyping can be established in several ways:

Rule COVAR handles assumptions. Rules UCOREFL, ACOREFL, and DCOREFL ex-
press that subtyping is reflexive, for the unit type, type variables, and dirts, respectively.
Notice that we do not have dedicated rules for reflexivity of arbitrary computation or value
types; as we illustrate below (Section 4.1), they can both be established using the reflexivity
of their subparts. Rule VCOARR establishes inequality of arrow types. As usual, the arrow
type constructor is contravariant in the argument type. Rule VCOHAND is similar, but for
handler types. Rule CCOCOMP captures the covariance of type constructor (!), establishing
subtyping between two computation types if subtyping is established for their respective
subparts. Finally, Rules DCONIL and DCOOP establish subtyping between dirts. Rule
DCONIL captures that the empty dirty set /0 is a subdirt of any dirt ∆ and Rule DCOOP

expresses that dirt subtyping preserved under extension with the same operation Op.

Well-formedness of Types, Constraints, Dirts, and Skeletons The relations Γ v̀ty A : τ

and Γ c̀ty C : τ check the well-formedness of value and computation types respectively.
Similarly, relations Γ c̀t ρ and Γ ∆̀ ∆ check the well-formedness of constraints and dirts,
respectively. They are all defined in Appendix A.

Example 3.1

Recall the definition let f = (fun g 7→ g unit) in . . . of a polymorphic f from Sec-
tion 2.3. Under different rule applications, f can be given different typings, including
simple (Unit→ Unit ! /0)→ Unit ! /0 under the typing

g : (Unit→ Unit ! /0) `v g : Unit→ Unit ! /0
TMVAR

Γ `v unit : Unit
TMUNIT

g : (Unit→ Unit ! /0) `c g unit : Unit ! /0
TMTMAPP

ε `v (fun g 7→ g unit) : (Unit→ Unit ! /0)→ Unit ! /0
TMTMABS

and the more involved polytype

S = ∀ς .∀α : ς ,α ′ : ς .∀δ ,δ ′.α 6 α
′⇒ δ 6 δ

′⇒ (Unit→ α ! δ )→ α
′ ! δ

′

obtained by generalizing

TMTMAPP
· · ·

Γ,g : (Unit→ α ! δ ) `c g unit : α ! δ

COVAR
Γ c̀o α 6 α

′
Γ c̀o δ 6 δ

′ COVAR

Γ c̀o α ! δ 6 α
′ ! δ

′ CCOCOMP

Γ,g : (Unit→ α ! δ ) `c g unit : α
′ ! δ

′ TMCASTC

ς ,α : ς ,α ′ : ς ,δ ,δ ′,α 6 α
′,δ 6 δ

′︸ ︷︷ ︸
Γ

`v (fun g 7→ g unit) : (Unit→ α ! δ )→ α
′ ! δ

′ TMTMABS
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Terms

value v ::= x | unit | fun (x : T) 7→ c | h
| Λς .v | v τ | Λα : τ.v | v T | Λδ .v | v ∆ | Λ(ω : π).v | v γ | vB γ

handler h ::= {return (x : T) 7→ cr,Op1 xk 7→ cOp1
, . . . ,Opn xk 7→ cOpn

}
computation c ::= return v | Op v (y : T.c) | do x← c1;c2

| handle c with v | v1 v2 | let x = v in c | cB γ

Types

skeleton τ ::= ς | Unit | τ1→ τ2 | τ1V τ2 | ∀ς .τ

value type T ::= α | Unit | T→ C | C1V C2 | ∀ς .T | ∀α :τ.T | ∀δ .T | π ⇒ T
simple coercion type π ::= T1 6 T2 | ∆1 6 ∆2

coercion type ρ ::= π | C1 6 C2

computation type C ::= T ! ∆

dirt ∆ ::= δ | /0 | {Op}∪∆

Coercions

γ ::= ω | 〈Unit〉 | 〈α〉 | 〈∆〉 | γ1→ γ2 | γ1V γ2 | /0∆ | {Op}∪ γ | ∀ς .γ | ∀(α : τ).γ | ∀δ .γ | π ⇒ γ | γ1 ! γ2

Fig. 5: EXEFF Syntax

Using the latter typing, f may be applied to a pure id = fun x 7→ return x as

TMVAR

Γ v̀ty Unit : Unit
Γ c̀o /06 /0

σ = [Unit/ς ,Unit/α,Unit/α
′, /0/δ , /0/δ

′]

Γ `v f : (Unit→ Unit ! /0)→ Unit ! /0

· · ·
Γ `v id : Unit→ Unit ! /0

TMTMABS

f : S︸︷︷︸
Γ

`c f id : Unit ! /0
TMTMAPP

We can also apply f to an impure tick = fun x 7→ Tick x (y.return y), and even enlarge
the final dirt as

TMVAR

Γ v̀ty Unit : Unit
Γ c̀o {Tick}6 {Tick,Tock}

σ = [Unit/ς ,Unit/α,Unit/α
′,{Tick}/δ ,{Tick,Tock}/δ

′]

Γ `v f : (Unit→ Unit ! {Tick})→ Unit ! {Tick,Tock}

· · ·
Γ `v tick : Unit→ Unit ! {Tick}

TMTMABS

·········
Γ `c f tick : Unit ! {Tick,Tock}

TMTMAPP

4 The EXEFF Language

4.1 Syntax

Figure 5 presents EXEFF’s syntax. EXEFF is a type theory akin to System F (Girard et al.,
1989), where every term encodes its own typing derivation. In essence, all abstractions and
applications that are implicit in IMPEFF, are made explicit in EXEFF via new syntactic
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(x : T) ∈ Γ

Γ v̀ x : T Γ v̀ unit : Unit
Γ,x : T c̀ c : C Γ T̀ T : τ

Γ v̀ (fun x : T 7→ c) : T→ C

Γ v̀ v : T1 Γ c̀o γ : T1 6 T2

Γ v̀ vB γ : T2

Γ,ς v̀ v : T

Γ v̀ Λς .v : ∀ς .T
Γ,α : τ v̀ v : T

Γ v̀ Λα : τ.v : ∀α : τ.T

Γ,δ v̀ v : T

Γ v̀ Λδ .v : ∀δ .T
Γ,ω : π v̀ v : T Γ ρ̀ π

Γ v̀ Λ(ω : π).v : π ⇒ T

Γ v̀ v : π ⇒ T Γ c̀o γ : π

Γ v̀ v γ : T

Γ,x : Tx c̀ cr : T !∆
[
(Op : T1→ T2) ∈ Σ Γ,x : T1,k : T2→ T !∆ c̀ cOp : T !∆

]
Op∈O

Γ v̀ {return (x : Tx) 7→ cr, [Opxk 7→ cOp]Op∈O} : Tx ! ∆∪O V T ! ∆

Γ v̀ v : ∀ς .T
Γ τ̀ τ

Γ v̀ v τ : T[τ/ς ]

Γ v̀ v : ∀α : τ.T1
Γ T̀ T2 : τ

Γ v̀ v T2 : T1[T2/α]

Γ v̀ v : ∀δ .T
Γ ∆̀ ∆

Γ v̀ v ∆ : T[∆/δ ]

Fig. 6: EXEFF Value Typing

forms. Additionally, EXEFF supports impredicative and higher-rank polymorphism, which
is reflected in the lack of discrimination between value types, qualified types and type
schemes; all non-computation types are denoted by T . While this design choice is not
strictly required for the purpose at hand, it makes for a cleaner system.

In short, EXEFF relates to IMPEFF the same way that System F (Girard, 1972; Reynolds,
1974; Reynolds, 1983) relates to the Hindley-Damas-Milner system (Hindley, 1969; Mil-
ner, 1978; Damas & Milner, 1982).

Coercions Of particular interest is the use of explicit subtyping coercions, denoted by γ .
EXEFF uses these to replace the implicit casts of IMPEFF (Rules TMCASTV and TM-
CASTC in Figure 3) with explicit casts (v B γ) and (c B γ). Essentially, coercions γ are
explicit witnesses of subtyping derivations: each coercion form corresponds to a subtyping
rule.

The first coercion form, ω , is a coercion variable, that is, a yet unknown proof of
subtyping. Forms 〈Unit〉, 〈α〉, and 〈∆〉witness reflexivity for the Unit type, type variables,
and dirts ∆, respectively.

Most of the remaining coercion forms are simple congruences; subtyping for skeleton
abstraction, type abstraction, dirt abstraction, and qualification is witnessed by forms ∀ς .γ ,
∀α.γ , ∀δ .γ , and π⇒ γ , respectively; similarly, syntactic forms γ1→ γ2 and γ1V γ2 capture
injection for the arrow and the handler type constructor, respectively.

Subtyping for computation types is witnessed by coercion form γ1 ! γ2, which combines
subtyping proofs of their components.

Finally, coercion forms /0∆ and {Op} ∪ γ are concerned with dirt subtyping. Form /0∆

witnesses that the empty dirt /0 is a subdirt of any dirt ∆. Lastly, coercion form {Op}∪ γ

witnesses that subtyping between dirts is preserved under extension with a new operation.
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Γ v̀ v1 : T→ C Γ v̀ v2 : T

Γ c̀ v1 v2 : C

Γ v̀ v : T Γ,x : T c̀ c : C

Γ c̀ let x = v in c : C

Γ c̀ v : T

Γ c̀ return v : T ! /0

Γ c̀ c1 : T1 ! ∆ Γ,x : T1 c̀ c2 : T2 ! ∆

Γ c̀ do x← c1;c2 : T2 ! ∆

(Op : T1→ T2) ∈ Σ Γ v̀ v : T1 Γ,y : T2 c̀ c : T ! ∆ Op ∈ ∆

Γ c̀ Op v (y : T2.c) : T ! ∆

Γ v̀ v : C1V C2 Γ c̀ c : C1

Γ c̀ handle c with v : C2

Γ c̀ c : C1 Γ c̀o γ : C1 6 C2

Γ c̀ cB γ : C2

Fig. 7: EXEFF Computation Typing

A Note on Reflexivity of Arbitrary Types In contrast to our earlier work (Saleh et al.,
2018), EXEFF (and the other calculi we present in the remainder of this paper) does not
syntactically allow for reflexivity of arbitrary types. Nevertheless, we avoid notational
burden and throughout the paper write 〈T〉 to denote the coercion that witnesses T 6 T;
such a coercion can be built by traversing the structure of T (see Appendix B). A similar
situation arises when applying a type substitution on a coercion, but it can be remedied in
exactly the same way.

One of the problems with reflexivity of arbitrary types is that it allows for many trivially
different proofs for the same constraint. The same is also true for inversion coercions,
which are coercion formers that allow for decomposition of coercion types. For example,
our earlier work (Saleh et al., 2018) included a coercion former left (γ) which is a proof
of T2 6 T1, if γ is a proof of T1→ C1 6 T2→ C2.

By removing both, we have managed to greatly simplify the proofs of the metatheoretical
properties of our calculi, since now there are much less proofs for any type inequality. Ad-
ditionally, as we show in Section 4.3, EXEFF’s operational semantics inspect the coercions
so having uniqueness of proofs (coercions) is essential.

The situation is quite different when it comes to dirts. Dirts can take much less forms
than types do (and so do coercions about them), and coercions regarding dirts need never
be inspected during evaluation. Hence, we do not require unique coercion forms for dirt
inequalities and can allow the simpler and more conventional reflexivity coercions 〈∆〉 for
arbitrary dirts ∆.

4.2 Typing

Value & Computation Typing Typing for EXEFF values and computations is presented
in Figures 6 and 7 and is given by two mutually recursive relations of the form Γ v̀ v : T
(values) and Γ c̀ c : C (computations). EXEFF typing environments Γ contain bindings for
variables of all sorts:

Γ ::= ε | Γ,ς | Γ,α : τ | Γ,δ | Γ,x : T | Γ,ω : π
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Typing is entirely syntax-directed. Apart from the typing rules for skeleton, type, dirt, and
coercion abstraction (and, subsequently, skeleton, type, dirt, and coercion application), the
main difference between typing for IMPEFF and EXEFF lies in the explicit cast forms,
(v B γ) and (c B γ). Given that a value v has type T1 and that γ is a proof that T1 is
a subtype of T2, we can upcast v with an explicit cast operation (v B γ). Upcasting for
computations works analogously.

Well-formedness of Types, Constraints, Dirts & Skeletons The definitions of the judge-
ments that check the well-formedness of EXEFF value types (Γ T̀ T : τ), computation types
(Γ C̀ C : τ), dirts (Γ ∆̀ ∆), and skeletons (Γ τ̀ τ) are equally straightforward as those for
IMPEFF and can be found in Appendix B.

Coercion Typing Coercion typing formalizes the intuitive interpretation of coercions we
gave in Section 4.1 and takes the form Γ c̀o γ : ρ , defined in Appendix B. It is essentially
an extension of the constraint entailment relation of Figure 4.

4.3 Operational Semantics

Figure 8 presents selected rules of EXEFF’s small-step, call-by-value operational seman-
tics. For lack of space, we omit β -rules and other common rules and focus only on cases
of interest. The complete operational semantics can be found in Appendix B.

Firstly, one of the non-conventional features of our system lies in the stratification of
results in plain results and cast results:

terminal value vT ::= unit | fun x : T 7→ c | h | Λς .v | Λ(α : τ).v | Λδ .v | λ (ω : π).v
value result vR ::= vT | vR B (γ1→ γ2) | vR B (γ1V γ2) | vR B (∀ς .γ)

| vR B (∀(α : τ).γ) | vR B (∀δ .γ) | vR B (π ⇒ γ)
terminal computation cT := return vR | cT B (γ1 ! γ2)

computation result cR ::= cT | Op vR (y : T.c)

Terminal values vT represent conventional values, and value results vR can either be plain
terminal values vT or cast value results, where we exclude reflexivity coercions, as those
can be further reduced. This stratification can also be found in Henglein’s coercion calcu-
lus (Henglein, 1994), Crary’s coercion calculus for inclusive subtyping (Crary, 2000), and,
more recently, in System FC (Sulzmann et al., 2007).

Computations evaluate either to a returned value or an operation call. Both can be further
cast, though we are able to delegate any coercion on the operation call to its continuation,
leading to a slightly different stratification than in values. The same is not true for re-
turned values. Consider for example the expression (return 5 B 〈Int〉 ! /0{Op}), of type
Int !{Op}. We can not reduce the expression further without losing effect information;
removing the cast would result in computation (return 5), of type Int ! /0. Even if we
consider type preservation only up to subtyping, the redex may still occur as a subterm in
a context that expects solely the larger type.
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v v v′ Values

v v v′

vB γ  v v′ B γ
VCAST

VPUSHUNIT

vR B 〈Unit〉 v vR
VPUSHSKEL

(vR B (∀ς .γ)) τ  v vR
τ B γ[τ/ς ]

VPUSHTY

(vR B (∀(α : τ).γ)) T v vR T B γ[T/α]
VPUSHDIRT

(vR B (∀δ .γ)) ∆ v vR
∆B γ[∆/δ ]

VPUSHQUAL

(vR B (π ⇒ γ1)) γ2 v vR
γ2 B γ1

c c c′ Computations

c c c′

cB γ  c c′ B γ
CCAST

CPUSHAPP

(vR B (γ1→ γ2)) v c (v
R (vB γ1))B γ2

CPUSHOP

(Op vR (x : T.c))B γ  c Op vR (x : T.(cB γ))

CDORET

do x← ((return vR)B (γ1 ! γ
′
1)B . . .B (γn ! γ

′
n));c2 c c2[(vR B γ1 B . . .B γn)/x]

CDOOP

do x← Op vR (y : T.c1);c2 c Op vR (y : T.do x← c1;c2)

CPUSHHANDLE

handle c with (vR B (γ1V γ2)) c (handle (cB γ1) with vR)B γ2

CHANDLERET
(return x 7→ cr) ∈ h

handle ((return vR)B (γ1 ! γ
′
1)B . . .B (γn ! γ

′
n)) with h c cr[(vR B γ1 B . . .B γn)/x]

(Opxk 7→ cOp) ∈ h

handle (Op vR (y : T.c)) with h c cOp[vR/x,(fun (y : T) 7→ handle c with h)/k]
CHANDLEOP1

(Opxk 7→ cOp) /∈ h

handle (Op vR (y : T.c)) with h c Op vR (y : T.handle c with h)
CHANDLEOP2

Fig. 8: EXEFF Operational Semantics (Selected Rules)

Secondly, we need to make sure that casts do not stand in the way of evaluation. This is
captured in the so-called “push” rules, all of which appear in Figure 8.

In relation v v v′, Rule VCAST evaluates under the coercion, while the rest are push
rules: whenever a redex is “blocked” due to a cast, we take the coercion apart and redis-
tribute it (in a type-preserving manner) over the subterms, so that evaluation can progress.

Example 4.1
Consider the evaluation of (((Λα.v) B (∀α.γ)) T) (we elide skeleton annotations for
clarity; they are orthogonal to the task at hand). The evaluation is “blocked” because of
the type cast; in order to expose the redex ((Λα.v) T) we need to push the coercion outside
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the redex, which we achieve using Rule VPUSHTY:

((Λα.v)B (∀α.γ)) T v ((Λα.v) T)B γ[T/α]

Since the type cast now happens after the instantiation, we change the coercion accord-
ingly (to γ[T/α]), to ensure that the type of the expression remains the same as before
(preservation). Now using Rule CCAST we can continue with the evaluation of the redex
under the cast, thus obtaining:

((Λα.v) T)B γ[T/α] v vB γ[T/α]

The rest of the push rules behave similarly.

The situation in relation c c c′ is quite similar. Rule CCAST continues evaluating the
computation under the coercion. Rule CPUSHAPP is a push rule for function application.
Rule CPUSHOP pushes a coercion inside an operation-computation, illustrating why the
syntax for cR does not require casts on operation-computations; we can always push the
casts inside the continuation. Rule CDORET is a β -reduction for sequencing and performs
two tasks at once. Since we know that the computation bound to x calls no operations,
we (a) safely “drop” the impure part of coercions, and (b) substitute x with vR, cast with
the pure part of coercions (so that types are preserved). Rule CDOOP handles operation
calls in sequencing computations. If an operation is called in a sequencing computation,
evaluation is suspended and the rest of the computation is captured in the continuation.

The last four rules are concerned with effect handling. Rule CPUSHHANDLE pushes a
coercion on the handler “outwards”, such that the handler can be exposed and evaluation
is not stuck (similarly to the push rule for term application). Rule CHANDLERET behaves
similarly to the push/beta rule for sequencing computations. Finally, the last two rules
are concerned with handling of operations. Rule CHANDLEOP1 captures cases where
the called operation is handled by the handler, in which case the respective clause of
the handler is called. As illustrated by the rule, like Pretnar (2014), EXEFF features deep
handlers: the continuation is also wrapped within a with-handle construct. Rule CHAN-
DLEOP2 captures cases where the operation is not covered by the handler and thus remains
unhandled.

We have shown that EXEFF is type safe:

Theorem 4.2 (Type Safety)
• If Γ v̀ v : T then either v is a result value or v v v′ and Γ v̀ v′ : T .
• If Γ c̀ c : C then either c is a result computation or c c c′ and Γ c̀ c′ : C.

5 Type Inference & Elaboration

This section presents the typing-directed elaboration of IMPEFF into EXEFF. This elabo-
ration makes all the implicit type and effect information explicit, and introduces explicit
term-level coercions to witness the use of subtyping.

After covering the declarative specification of this elaboration, we present a constraint-
based algorithm to infer IMPEFF types and at the same time elaborate into EXEFF. This
algorithm alternates between two phases: 1) the syntax-directed generation of constraints
from the IMPEFF term, and 2) solving these constraints.
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5.1 Elaboration of IMPEFF into EXEFF

The greyed parts of Figure 3 augment the typing rules for IMPEFF value and computation
terms with typing-directed elaboration to corresponding EXEFF terms. The elaboration
is mostly straightforward, mapping every IMPEFF construct onto its corresponding EX-
EFF construct while adding explicit type annotations to binders in Rules TMTMABS,
TMHANDLER and TMOP. Implicit appeals to subtyping are turned into explicit casts with
coercions in Rules TMCASTV and TMCASTC. Rule TMLET introduces explicit binders
for skeleton, type, and dirt variables, as well as for constraints. These last also introduce
coercion variables ω that can be used in casts.

Binders introduced by Rule TMLET are eliminated in Rule TMVAR by means of explicit
application with skeletons, types, dirts and coercions. The coercions are produced by the
auxiliary judgement Γ c̀o γ : π , defined in Figure 4, which provides a coercion witness for
every subtyping proof.

As a sanity check, we have shown that elaboration preserves types.

Theorem 5.1 (Type Preservation)
• If Γ `v v : A v′ then elabΓ(Γ) v̀ v′ : elabS(A).
• If Γ `c c : C c′ then elabΓ(Γ) c̀ c′ : elabC(C).

Here elabΓ(Γ), elabS(A) and elabC(C) convert IMPEFF environments and types into EXEFF

environments and types; they are defined in Appendix C.

Example 5.2
A valid elaboration of the polymorphic expression

let f = (fun g 7→ g unit) in . . .

from Example 3.1 can be

let f : (Unit→ Unit ! /0)→ Unit ! /0
= fun (g : Unit→ Unit ! /0) 7→ g unit

in . . .

if the simple monomorphic typing is used (we have included the signature of f for clar-
ity). For the polymorphic variant, the elaboration features both type-level abstractions and
explicit casts:

let f : ∀ς .∀α : ς .∀α ′ : ς .∀δ .∀δ ′.(α 6 α ′)⇒ (δ 6 δ ′)⇒ (Unit→ α ! δ )→ α ′ ! δ ′

= Λς .Λ(α : ς).Λ(α ′ : ς).Λδ .Λδ ′.Λ(ω : α 6 α ′).Λ(ω ′ : δ 6 δ ′).

fun (g : Unit→ α !δ ) 7→ ((g unit)B (ω !ω ′))

in . . .

Here, coercion variables ω and ω ′ are utilized by the body of f for upcasting (g unit) to
have type α ′ ! δ ′.

Similarly, applications of the latter variant need to include explicit type-level applica-
tions and coercion witnesses. Elaborating the application of f to the pure function id we
get

f Unit Unit Unit /0 /0 〈Unit〉 /0 /0 (fun (x : Unit) 7→ return x)
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whereas for the impure tick at a type Unit ! {Tick,Tock} we get

f Unit Unit Unit {Tick} {Tick,Tock} 〈Unit〉 ({Tick}∪ /0{Tock})

(fun x : Unit 7→ Tick x (y : Unit.((return y)B 〈Unit〉 ! /0{Tick})))

where return had to be coerced in order to match the dirt of the operation call.

5.2 Constraint Generation & Elaboration

Constraint generation with elaboration into EXEFF is presented in Figures 9 (values) and 10
(computations). Before going into the details of each, we first introduce the three auxiliary
constructs they use.

constraint set P,Q ::= • | τ1 = τ2,P | α : τ,P | ω : π,P
typing environment Γ ::= ε | Γ,x : S

substitution σ ::= • | σ · [τ/ς ] | σ · [A/α] | σ · [∆/δ ] | σ · [γ/ω]

At the heart of our algorithm are sets P , containing three different kinds of constraints:
(a) skeleton equalities of the form τ1 = τ2, (b) skeleton constraints of the form α : τ , and
(c) wanted subtyping constraints of the form ω : π . The purpose of the first two becomes
clear when we discuss constraint solving, in Section 5.3. Next, typing environments Γ

only contain term variable bindings, while other variables represent unknowns of their sort
and may end up being instantiated after constraint solving. Finally, during type inference
we compute substitutions σ , for refining as of yet unknown skeletons, types, dirts, and
coercions. The last one is essential, since our algorithm simultaneously performs type
inference and elaboration into EXEFF.

Values. Constraint generation for values takes the form Q;Γ v̀ v : A |Q′;σ  v′ . It takes
as inputs a set of wanted constraints Q, a typing environment Γ, and a IMPEFF value v,
and produces a value type A, a new set of wanted constraints Q′, a substitution σ , and a
EXEFF value v′.

In order to support let generalization, our inference algorithm does not keep constraint
generation and solving separate. Instead, the two are interleaved, as indicated by the addi-
tional arguments of our relation: (a) constraints Q are passed around in a stateful manner
(i.e., they are input and output), and (b) substitutions σ generated from constraint solving
constitute part of the relation output.

The rules are syntax-directed on the input IMPEFF value. Rule TMVAR handles term
variables x: as usual for constraint-based type inference the rule instantiates the polymor-
phic type (∀ς̄ .α : τ.∀δ̄ .π̄ ⇒ A) of x with fresh variables; these are placeholders that are
determined during constraint solving. Moreover, the rule extends the wanted constraints
P with π̄ , appropriately instantiated. In EXEFF, this corresponds to explicit skeleton, type,
dirt, and coercion applications.

More interesting is Rule TMABS, which handles term abstractions. Like in standard
Hindley-Damas-Milner (Damas & Milner, 1982), it generates a fresh type variable α for
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Q;Γ v̀ v : A |Q′;σ  v′ Values

(x : ∀ς̄ .α : τ.∀δ̄ .π̄ ⇒ A) ∈ Γ σ = [ς ′/ς ,α ′/α,δ ′/δ ]

Q;Γ v̀ x : σ(A) | ω : σ(π),α ′ : σ(τ),Q;• x ς̄ ′ ᾱ ′ δ̄ ′ ω̄

TMVAR

Q;Γ v̀ unit : Unit |Q;• unit
TMUNIT

α : ς ,Q;Γ,x : α c̀ c : C |Q′;σ  c′

Q;Γ v̀ (fun x 7→ c) : σ(α)→ C |Q′;σ  fun x : σ(α) 7→ c′
TMABS

αr : ςr,Q;Γ,x : αr c̀ cr : Br ! ∆r |Q0;σr c′r σ
i = σi ·σi−1 · . . . ·σ1

Opi ∈ O :
(Opi : Ai→ Bi) ∈ Σ

αi : ςi,Qi−1;σ
i−1(σr(Γ)),x : Ai,k : Bi→ αi !δi c̀ cOpi

: BOpi
!∆Opi

|Qi;σi c′Opi

Q′ = Qn,αin : ςin,αout : ςout,
ω1 : σ

n(Br)6 αout,

ω2 : σ
n(∆r)6 δout,

ω3i : σ
n(BOpi

)6 αout, (∀i ∈ [1 . . .n])
ω4i : σ

n(∆Opi
)6 δout, (∀i ∈ [1 . . .n])

ω5i : Bi→ αout !δout 6 Bi→ σ
n(αi !δi), (∀i ∈ [1 . . .n])

ω6 : αin 6 σ
n(σr(αr)),

ω7 : δin 6 δout ∪O

cres = {return y : σ
n(σr(αr)) 7→ σ

n(c′r)[yB ω6/x]B ω1 !ω2

,
[
Opi x l 7→ σ

n(c′Opi
)[l B ω5i/k]B ω3i !ω4i

]
Opi∈O

}B (〈αin〉 !ω7V 〈αout〉 !〈δout〉)

Q;Γ v̀ {return x 7→ cr, [Opxk 7→ cOp]Op∈O} : αin !δinV αout !δout |Q′;(σn ·σr) cres
TMHAND

Fig. 9: Constraint Generation with Elaboration (Values)

the type of the abstracted term variable x. In addition, it generates a fresh skeleton variable
ς , to capture the (yet unknown) shape of α .

As explained in detail in Section 5.3, the constraint solver instantiates type variables only
through their skeletons annotations. Because we want to allow local constraint solving
for the body c of the term abstraction the opportunity to produce a substitution σ that
instantiates α , we have to pass in the annotation constraint α : ς , which hints at why we
need to pass constraints in a stateful manner. We apply the resulting substitution σ to the
result type σ(α)→ C (though σ refers to IMPEFF types, we abuse notation to save clutter
and apply it directly to EXEFF entities too).

Finally, Rule TMHAND is concerned with handlers. Since it is the most complex of the
rules, we discuss each of its premises separately:

Firstly, we infer a type Br !∆r for the right hand side of the return-clause. Since αr

is a fresh unification variable, just like for term abstraction we require αr : ςr, for a fresh
skeleton variable ςr.

Secondly, we check every operation clause in O in order. For each clause, we generate
fresh skeleton, type, and dirt variables (ςi, αi, and δi), to account for the (yet unknown)
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result type αi !δi of the continuation k, while inferring type BOpi !∆Opi for the right-hand-
side cOpi .

More interesting is the (final) set of wanted constraints Q′. First, we assign to the handler
the overall type

αin !δinV αout !δout

where ςin,αin,δin,ςout,αout,δout are fresh variables of the respective sorts. In turn, we
require that (a) the type of the return clause is a subtype of αout !δout (given by the com-
bination of ω1 and ω2), (b) the right-hand-side type of each operation clause is a subtype
of the overall result type: σn(BOpi !∆Opi)6 αout !δout (witnessed by ω3i !ω4i ), (c) the actual
types of the continuations Bi → αout !δout in the operation clauses should be subtypes of
their assumed types Bi→ σn(αi !δi) (witnessed by ω5i ). (d) the overall argument type αin

is a subtype of the assumed type of x: σn(σr(αr)) (witnessed by ω6), and (e) the input dirt
set δin is a subtype of the resulting dirt set δout, extended with the handled operations O

(witnessed by ω7).
All the aforementioned implicit subtyping relations become explicit in the elaborated

term cres, via explicit casts.

Computations. The judgement Q;Γ c̀ c : C |Q′;σ  c′ generates constraints for com-
putations.

Rule TMAPP handles term applications of the form v1 v2. After inferring a type for each
subterm (A1 for v1 and A2 for v2), we generate the wanted constraint σ2(A1)6 A2→ α !δ ,
with fresh type and dirt variables α and δ , respectively. Associated coercion variable ω is
then used in the elaborated term to explicitly (up)cast v′1 to the expected type A2→ α !δ .

Rule TMRETURN handles return-computations and is entirely straightforward.
Rule TMLET handles polymorphic let-bindings. First, we infer a type A for v, as well

as wanted constraints Qv. Then, we simplify wanted constraints Qv by means of function
solve (which we explain in detail in Section 5.3 below), obtaining a substitution σ ′1 and a
set of residual constraints Q′v.

Generalization of x’s type is performed by the auxiliary function split, given by the
following clause:

ς̄ = {ς | (α : ς) ∈Q,@α
′.α ′ /∈ ᾱ ∧ (α ′ : ς) ∈Q}

ᾱ = fvα(Q)∪ fvα(A) \ fvα(Γ) Q1 = {(ω : π) | (ω : π) ∈Q, fv(π) 6⊆ fv(Γ)}
δ̄ = fvδ (Q)∪ fvδ (A) \ fvδ (Γ) Q2 = Q−Q1

split(Γ,Q,A) = 〈ς̄ ,α : τ, δ̄ ,Q1,Q2〉

In essence, split generates the type (scheme) of x in parts. Additionally, it computes the
subset Q2 of the input constraints Q that do not depend on locally-bound variables. Such
constraints can be floated “upwards”, and are passed as input when inferring a type for c.
The remainder of the rule is self-explanatory.

Rule TMOP handles operation calls. Observe that in the elaborated term, we upcast the
inferred type to match the expected type in the signature.

Rule TMDO handles sequences. The requirement that all computations in a do-construct
have the same dirt set is expressed in the wanted constraints σ2(∆1)6 δ and ∆2 6 δ (where
δ is a fresh dirt variable; the resulting dirt set), witnessed by coercion variables ω1 and ω2.
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Q;Γ c̀ c : C |Q′;σ  c′ Computations

Q;Γ v̀ v1 : A1 |Q1;σ1 v′1 Q1;σ1(Γ) v̀ v2 : A2 |Q2;σ2 v′2

Q;Γ c̀ v1 v2 : α !δ | α : ς , ω : σ2(A1)6 A2→ α !δ ,Q2;(σ2 ·σ1) (σ2(v′1)B ω) v′2
TMAPP

Q;Γ v̀ v : A |Q′;σ  v′

Q;Γ c̀ return v : A ! /0 |Q′;σ  return v′
TMRETURN

Q;Γ v̀ v : A |Qv;σ1 v′

solve(•; •; Qv) = (σ ′1,Q
′
v) split(σ ′1(σ1(Γ)),Q

′
v,σ
′
1(A)) = 〈ς̄ ,α : τ, δ̄ , ω : π,Q1〉

Q1;σ
′
1(σ1(Γ)),x : ∀ς̄ .∀α : τ.∀δ̄ .π ⇒ σ

′
1(A) c̀ c : C |Q2;σ2 c′

cres = let x = σ2(Λς̄ .Λα : τ.Λδ̄ .Λ(ω : elabρ(π)).v′) in c′

Q;Γ c̀ let x = v in c : C |Q2;(σ2 ·σ ′1 ·σ1) cres
TMLET

Q;Γ v̀ v : A1 |Q1;σ1 v′ Q1;σ1(Γ),y : BOp c̀ c : A2 ! ∆2 |Q2;σ2 c′

(Op : AOp→ BOp) ∈ Σ cres = Op (σ2(v′)B ω) (y : elabS(BOp).c′)

Q;Γ c̀ Op v (y : BOp.c) : A2 ! {Op}∪∆2 | ω : σ2(A1)6 AOp,Q2;(σ2 ·σ1) cres
TMOP

Q;Γ c̀ c1 : A1 !∆1 |Q1;σ1 c′1 Q1;σ1(Γ),x : A1 c̀ c2 : A2 !∆2 |Q2;σ2 c′2
cres = do x← (σ2(c′1)B 〈σ2(A1)〉 !ω1);(c′2 B 〈A2〉 !ω2)

Q;Γ c̀ do x← c1;c2 : A2 ! δ | ω1 : σ2(∆1)6 δ , ω2 : ∆2 6 δ ,Q2;(σ2 ·σ1) cres
TMDO

Q;Γ v̀ v : A1 |Q1;σ1 v′ Q1;σ1(Γ) c̀ c : A2 !∆2 |Q2;σ2 c′

Q′ = α1 : ς1,α2 : ς2, ω1 : σ2(A1)6 (α1 !δ1V α2 !δ2), ω2 : A2 6 α1, ω3 : ∆2 6 δ1,Q2

cres = handle (c′ B (ω2 ! ω3)) with (σ2(v′)B ω1)

Q;Γ c̀ handle c with v : α2 ! ∆2 |Q′;(σ2 ·σ1) cres
TMHANDLE

Fig. 10: Constraint Generation with Elaboration (Computations)

Both coercion variables are used in the elaborated term to upcast c1 and c2, such that both
draw effects from the same dirt set δ .

Finally, Rule TMHANDLE is concerned with effect handling. After inferring type A1 for
the handler v, we require that it takes the form of a handler type, witnessed by coercion
variable ω1 : σ2(A1) 6 (α1 !δ1 V α2 !δ2), for fresh α1,α2,δ1,δ2. To ensure that the type
A2 !∆2 of c matches the expected type, we require that A2 !∆2 6 α1 !δ1. Our syntax does
not include coercion variables for computation subtyping; we achieve the same effect by
combining ω2 : A2 6 α1 and ω3 : ∆2 6 δ1.

In the following, notation σ |= Q denotes that the substitution σ is a solution of the
constraint set Q, i.e., when after applying σ to all constraints in Q, we get derivable
judgements according to rules of Figure 4.

Theorem 5.3 (Soundness of Inference)
If •;Γ v̀ v : A |Q;σ  v′ then for any σ ′ |=Q, we have (σ ′ ·σ)(Γ) `v v : σ ′(A) σ ′(v′) ,
and analogously for computations.

Theorem 5.4 (Completeness of Inference)
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If Γ `v v : A v′ then we have •;Γ v̀ v : A′ | Q;σ  v′′ and there exists σ ′ |= Q and
γ , such that σ ′(v′′) = v′ and σ(Γ) c̀o γ : σ ′(A′)6 A. An analogous statement holds for
computations.

5.3 Constraint Solving

The second phase of our inference-and-elaboration algorithm is the constraint solver. It is
defined by the solve function signature:

solve(σ ; P; Q) = (σ ′, P ′)

It takes three inputs: the substitution σ accumulated so far, a list of already processed
constraints P , and a queue of still to be processed constraints Q. There are two out-
puts: the substitution σ ′ that solves the constraints and the residual constraints P ′. The
substitutions σ and σ ′ contain four kinds of mappings: ς 7→ τ , α 7→ A, δ 7→ ∆ and ω → γ

which respectively instantiate skeleton variables, type variables, dirt variables and coercion
variables.

Theorem 5.5 (Correctness of Solving)
For any set Q, the call solve(•;•;Q) either results in a failure, in which case Q has no
solutions, or returns (σ ,P) such that for any σ ′ |= Q, there exists σ ′′ |= P such that
σ ′ = σ ′′ ·σ .

The solver is invoked with solve(•; •; Q), to process the constraints Q generated in the
first phase of the algorithm, i.e., with an empty substitution and no processed constraints.
The solve function is defined by case analysis on the queue.

Empty Queue When the queue is empty, all constraints have been processed. What re-
mains are the residual constraints and the solving substitution σ , which are both returned
as the result of the solver.

solve(σ ; P; •) = (σ , P)

Skeleton Equalities The next set of cases we consider are those where the queue is non-
empty and its first element is an equality between skeletons τ1 = τ2. We consider seven
possible cases based on the structure of τ1 and τ2 that together essentially implement con-
ventional unification as used in Hindley-Milner type inference (Damas & Milner, 1982).

solve(σ ; P;τ1 = τ2,Q) = match τ1 = τ2 with

|ς = ς 7→ solve(σ ; P; Q)

|ς = τ 7→ if ς /∈ fvς (τ) then let σ ′ = [τ/ς ] in solve(σ ′ ·σ ; •;σ ′(Q,P)) else fail

|τ = ς 7→ if ς /∈ fvς (τ) then let σ ′ = [τ/ς ] in solve(σ ′ ·σ ; •;σ ′(Q,P)) else fail

|Unit= Unit 7→ solve(σ ; P; Q)

|(τ1→ τ2) = (τ3→ τ4) 7→ solve(σ ; P; τ1 = τ3,τ2 = τ4,Q)

|(τ1V τ2) = (τ3V τ4) 7→ solve(σ ; P; τ1 = τ3,τ2 = τ4,Q)

|otherwise 7→ fail
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The first case applies when both skeletons are the same type variable ς . Then the equality
trivially holds. Hence we drop it and proceed with solving the remaining constraints. The
next two cases apply when either τ1 or τ2 is a skeleton variable ς . If the occurs check fails,
there is no finite solution and the algorithm signals failure. Otherwise, the constraint is
solved by instantiating the ς . This additional substitution is accumulated and applied to all
other constraints P,Q. Because the substitution might have modified some of the already
processed constraints P , we have to revisit them. Hence, they are all pushed back onto the
queue, which is processed recursively.

The next three cases consider three different ways in which the two skeletons can have
the same instantiated top-level structure. In those cases the equality is decomposed into
equalities on the subterms, which are pushed onto the queue and processed recursively.

The last catch-all case deals with all ways in which the two skeletons can be instantiated
to different structures. Then there is no solution.

Skeleton Annotations The next four cases consider a skeleton annotation α : τ at the head
of the queue, and propagate the skeleton instantiation to the type variable. The first case,
where the skeleton is a variable ς , has nothing to do, moves the annotation to the processed
constraints and proceeds with the remainder of the queue. In the other three cases, the
skeleton is instantiated and the solver instantiates the type variable with the corresponding
structure, introducing fresh variables for any subterms, where implicitly annotate every
type variable with its skeleton: ατ . The instantiating substitution is accumulated and ap-
plied to the remaining constraints, which are processed recursively.

solve(σ ; P; α : τ,Q) = match τ with

|ς 7→ solve(σ ; P,α : τ; Q)

|Unit 7→ let σ ′ = [Unit/α] in solve(σ ′ ·σ ; •; σ ′(Q,P))

|τ1→ τ2 7→ let σ ′ = [(ατ1
1 → α

τ2
2 !δ )/α] in solve(σ ′·σ ; •; α1 : τ1,α2 : τ2,σ

′(Q,P))

|τ1V τ2 7→ let σ ′ = [(ατ1
1 !δ1V α

τ2
2 !δ2)/α] in solve(σ ′·σ ; •; α1 : τ1,α2 : τ2,σ

′(Q,P))

Value Type Subtyping Next are the cases where a subtyping constraint between two
value types A1 6 A2—evidenced by coercion variable ω—is at the head of the queue.
We consider six different situations.

solve(σ ; P; ω : A1 6 A2,Q) = match A1 6 A2 with

|A6 A 7→ let T = elabS(A) in solve([〈T〉/ω] ·σ ; P; Q)

|ατ1 6 A 7→ let τ2 = skeleton(A) in solve(σ ; P,ω : ατ1 6 A; τ1 = τ2,Q)

|A6 ατ1 7→ let τ2 = skeleton(A) in solve(σ ; P,ω : A6 ατ1 ; τ2 = τ1,Q)

|(A1→ B1 !∆1)6 (A2→ B2 !∆2) 7→ let σ ′ = [(ω1→ ω2 !ω3)/ω] in

solve(σ ′ ·σ ; P; ω1 : A2 6 A1,ω2 : B1 6 B2,ω3 : ∆1 6 ∆2,Q)

|(A1 !∆1V A2 !∆2)6 (A3 !∆3V A4 !∆4) 7→ let σ ′ = [(ω1 !ω2V ω3 !ω4)/ω] in

solve(σ ′ ·σ ; P; ω1 : A3 6 A1,ω2 : ∆3 6 ∆1,ω3 : A2 6 A4,ω4 : ∆2 6 ∆4,Q)

|otherwise 7→ fail
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If the two types are equal, the subtyping holds trivially through reflexivity. The solver thus
drops the constraint and instantiates ω with the reflexivity coercion 〈T〉. Note that each
coercion variable only appears in one constraint. So we only accumulate the substitution
and do not have to apply it to the other constraints. In the next two cases, one of the two
types is a type variable α . Then we move the constraint to the processed set. We also
add an equality constraint between the skeletons to the queue, thus enforcing the invariant
that only types with the same skeleton are compared. Through the skeleton equality the
type structure (if any) from the type is also transferred to the type variable. The next two
cases concern two types with the same top-level instantiation. In these cases the solver
decomposes the constraint into constraints on the corresponding subterms and appropri-
ately relates the evidence of the old constraint to the new ones. The final case catches all
situations where the two types are instantiated with a different structure and thus there is
no solution.
Auxiliary function skeleton(A), defined in Appendix C, computes the skeleton of A.

Dirt Subtyping The final six cases deal with subtyping constraints between dirts.

solve(σ ; P;ω : ∆6 ∆′,Q) = match ∆6 ∆′ with

|O ∪δ 6 O ′∪δ ′ 7→ if O 6= /0 then let σ ′ = [((O\O ′)∪δ ′′)/δ ′,O ∪ω ′/ω] in

solve(σ ′ ·σ ; •;(ω ′ : δ ≤ σ ′(∆′)),σ ′(Q,P))

else solve(σ ; P,(ω : ∆6 ∆′); Q)

| /06 ∆′ 7→ solve([ /0∆′/ω] ·σ ; P; Q)

|δ 6 /0 7→ let σ ′ = [ /0/δ ; /0 /0/ω] in solve(σ ′ ·σ ; •; σ ′(Q,P))

|O ∪δ 6 O ′ 7→
if O ⊆ O ′ then let σ ′ = [O ∪ω ′/ω] in solve(σ ′ ·σ ; P,(ω ′ : δ 6 O ′); Q) else fail

|O 6 O ′ 7→ if O ⊆ O ′ then let σ ′ = [O ∪ /0O ′\O/ω] in solve(σ ′ ·σ ; P; Q) else fail

|O 6 O ′∪δ ′ 7→ let σ ′ = [(O\O ′)∪δ ′′/δ ′; O ′∪ /0(O ′\O)∪δ ′′/ω] in solve(σ ′ ·σ ; •; σ ′(Q,P))

If the two dirts are of the general form O ∪δ and O ′∪δ ′, we distinguish two subcases.
Firstly, if O is empty, there is nothing to be done and we move the constraint to the
processed set. Secondly, if O is non-empty, we partially instantiate δ ′ with any of the
operations that appear in O but not in O ′. We then drop O from the constraint, and,
after substitution, proceed with processing all constraints. For instance, for {Op1}∪ δ 6
{Op2}∪δ ′, we instantiate δ ′ to {Op1}∪δ ′′—where δ ′′ is a fresh dirt variable—and proceed
with the simplified constraint δ 6 {Op1,Op2} ∪ δ ′′. Note that due to the set semantics
of dirts, it is not valid to simplify the above constraint to δ 6 {Op2}∪ δ ′′. After all the
substitution [δ 7→ {Op1},δ ′′ 7→ /0] solves the former and the original constraint, but not the
latter.

The second case, /0 6 ∆′, always holds and is discharged by instantiating ω to /0∆′ . The
third case, δ 6 /0, has only one solution: δ 7→ /0 with coercion /0 /0. The fourth case, O ∪δ 6
O ′, has as many solutions as there are subsets of O ′, provided that O ⊆ O ′. We then
simplify the constraint to δ 6 O ′, which we move to the set of processed constraints.
The fifth case, O 6 O ′, holds iff O ⊆ O ′. The last case, O 6 O ′ ∪ δ ′, is like the first,
but without a dirt variable in the left-hand side. We can satisfy it in a similar fashion, by
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partially instantiating δ ′ with (O \O ′)∪ δ ′′—where δ ′′ is a fresh dirt variable. Now the
constraint is satisfied and can be discarded.

6 Erasure of Effect Information from EXEFF

Our first backend for EXEFF is SKELEFF, which is essentially a copy of EXEFF from which
all effect information ∆, type information T and coercions γ have been erased. Instead,
skeletons τ play the role of plain types. Thus, SKELEFF is essentially System F extended
with term-level (but not type-level) support for algebraic effects.

The main point of SKELEFF is to show that we can erase the effects and subtyping from
EXEFF to obtain types that are compatible with a System F-like language. At the term-level
SKELEFF also resembles a subset of Multicore OCaml (Dolan et al., 2015), which provides
native support for algebraic effects and handlers but features no explicit polymorphism.

6.1 The SKELEFF Language

Figure 11 defines the syntax of SKELEFF. The type system and operational semantics of
SKELEFF follow from those of EXEFF, and can be found in Appendix D.

Terms
value v ::= x | unit | h | fun (x : τ) 7→ c | Λς .v | v τ

handler h ::= {return (x : τ) 7→ cr,Op1 xk 7→ cOp1
, . . . ,Opn xk 7→ cOpn

}
computation c ::= v1 v2 | let x = v in c | return v | Op v (y : τ.c)

| do x← c1;c2 | handle c with v

Types type τ ::= ς | τ1→ τ2 | τ1V τ2 | Unit | ∀ς .τ

Fig. 11: SKELEFF Syntax

6.2 Erasure

Figure 12 defines erasure functions εσ
v (v), εσ

c (c), εσ
V (T), εσ

C (C) and εσ
E (Γ) for values,

computations, value types, computation types, and type environments respectively. All five
functions take a substitution σ from the free type variables α to their skeleton τ as an
additional parameter.

Thanks to the skeleton-based design of EXEFF, erasure is straightforward. All types are
erased to their skeletons, dropping quantifiers for type variables and all occurrences of dirt
sets. Moreover, coercions are dropped from values and computations. Finally, all binders
and elimination forms for type variables, dirt set variables and coercions are dropped from
values and type environments.

Example 6.1
Continuing the Example 5.2, a monomorphic function

let f : (Unit→ Unit ! /0)→ Unit ! /0
= fun (g : Unit→ Unit ! /0) 7→ g unit

in . . .
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εσ
v (x) = x

εσ
v (unit) = unit

εσ
v (vB γ) = εσ

v (v)
εσ

v (fun (x : T) 7→ c) = fun (x : εσ
V (T)) 7→ εσ

c (c)
εσ

v (Λς .v) = Λς .εσ
v (v)

εσ
v (Λ(α : τ).v) = ε

σ ·{α 7→τ}
v (v)

εσ
v (Λδ .v) = εσ

v (v)
εσ

v (Λ(ω : π).v) = εσ
v (v)

εσ
v (v τ) = εσ

v (v) τ

εσ
v (v T) = εσ

v (v)
εσ

v (v ∆) = εσ
v (v)

εσ
v (v γ) = εσ

v (v)

εσ
v ({return (x : T) 7→ cr, [Opxk 7→ cOp]Op∈O}) =
{return (x : εσ

V (T)) 7→ εσ
c (cr), [Opxk 7→ εσ

c (cOp)]Op∈O}

εσ
c (v1 v2) = εσ

v (v1) εσ
v (v2)

εσ
c (let x = v in c) = let x = εσ

v (v) in εσ
c (c)

εσ
c (return v) = return (εσ

v (v))
εσ

c (Op v (y : T.c)) = Op (εσ
v (v)) (y : εσ

V (T).εσ
c (c))

εσ
c (do x← c1;c2) = do x← εσ

c (c1);εσ
c (c2)

εσ
c (handle c with v) = handle εσ

c (c) with εσ
v (v)

εσ
c (cB γ) = εσ

c (c)

εσ
V (α) = σ(α)

εσ
V (T→ C) = εσ

V (T)→ εσ
C (C)

εσ
V (C1V C2) = εσ

C (C1)V εσ
C (C2)

εσ
V (Unit) = Unit

εσ
V (π ⇒ T) = εσ

V (T)
εσ

V (∀ς .T) = ∀ς .εσ
V (T)

εσ
V (∀(α : τ).T) = ε

σ ·{α 7→τ}
V (T)

εσ
V (∀δ .T) = εσ

V (T)

εσ
C (T ! ∆) = εσ

V (T)

εσ
E (ε) = ε

εσ
E (Γ,ς) = εσ

E (Γ),ς

εσ
E (Γ,α : τ) = ε

σ ·{α 7→τ}
E (Γ)

εσ
E (Γ,δ ) = εσ

E (Γ)
εσ

E (Γ,x : T) = εσ
E (Γ),x : εσ

V (T)
εσ

E (Γ,ω : π) = εσ
E (Γ)

Fig. 12: Definition of type erasure.

is erased to
let f : (Unit→ Unit)→ Unit

= fun (g : Unit→ Unit) 7→ g unit

in . . .

while its polymorphic variant

let f : ∀ς .∀α : ς .∀α ′ : ς .∀δ .∀δ ′.(α 6 α ′)⇒ (δ 6 δ ′)⇒ (Unit→ α ! δ )→ α ′ ! δ ′

= Λς .Λ(α : ς).Λ(α ′ : ς).Λδ .Λδ ′.Λ(ω : α 6 α ′).Λ(ω ′ : δ 6 δ ′).

fun (g : Unit→ α !δ ) 7→ ((g unit)B (ω !ω ′))

in . . .

is erased to
let f : ∀ς .(Unit→ ς)→ ς

= Λς .fun (g : Unit→ ς) 7→ g unit

in . . .

Note that in addition to removing all effect annotations and coercions, the erasure removed
type quantifiers and abstractions, and replaced α and α ′ with their skeleton ς .

We proceed similarly in applications, where

f Unit Unit Unit /0 /0 〈Unit〉 /0 /0 (fun (x : Unit) 7→ return x)
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is erased simply to

f Unit (fun (x : Unit) 7→ return x)

where only the skeleton application remains. Similarly

f Unit Unit Unit {Tick} {Tick,Tock} 〈Unit〉 ({Tick}∪ /0{Tock})

(fun x : Unit 7→ Tick x (y : Unit.((return y)B 〈Unit〉 ! /0{Tick})))

is erased to

f Unit (fun x : Unit 7→ Tick x (y : Unit.return y))

showing that a polymorphic function is applied in exactly the same way to a pure or an
impure function.

The expected theorems hold. Firstly, types are preserved by erasure, where typing for
SKELEFF values and computations takes the obvious forms Γ èv v : τ and Γ èc c : τ .

Theorem 6.2 (Type Preservation)
If Γ v̀ v : T then ε /0

E(Γ) èv εΓ
v (v) : εΓ

V(T). If Γ c̀ c : C then ε /0
E(Γ) èc εΓ

c (c) : εΓ
C(C).

Here we abuse of notation and use Γ as a substitution from type variables to skeletons used
by the erasure functions.

Finally, we have that erasure preserves the operational semantics.

Theorem 6.3 (Semantic Preservation)
If v v v′ then εσ

v (v)≡ v εσ
v (v

′). If c c c′ then εσ
c (c)≡ c εσ

c (c
′).

In both cases,≡ denotes the congruence closure of the step relation in SKELEFF, defined
in Appendix D. The choice of substitution σ does not matter as types do not affect the
behaviour. Note that because coercions are dropped during erasure, this means that also in
EXEFF they do not have an essential runtime impact.

Corollary 6.4 (Coercion Irrelevance)
If v ∗v v1 and vB γ  ∗v v2 then εσ

v (v1) ≡ v εσ
v (v2). If c ∗c c1 and cB γ  ∗c c2 then

εσ
v (c1)≡ c εσ

v (c2).

Discussion The reason we need to use the symmetric congruence closure of the step
relation in our preservation theorem is that the original EXEFF program and the resulting
SKELEFF program do not necessarily operate in lockstep. Indeed, the erasure of casts with
coercions, of type and coercion binders and of their applications means that the erased
program does not have to step through their reductions. On the other hand, the erasure of
type and coercion binders may expose applications of skeleton binders that the SKELEFF

program has to reduce whereas the original EXEFF program does not.
For example, take the EXEFF term

c1 = (λ (x : ∀δ .Unit).return (λ (y : Unit).return (x /0))) (Λδ .(Λς .unit) Unit)

which β -reduces to

c2 = return (λ (y : Unit).return ((Λδ .(Λς .unit) Unit) /0))
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When we erase c1, we get

ε
σ
c (c1) = (λ (x : Unit).return (λ (y : Unit).return x)) ((Λς .unit) Unit)

The erasure of the Λδ binder exposes a new redex that has precedence. Hence, εσ
c (c1)

steps to

(λ (x : Unit).return (λ (y : Unit).return x)) unit

which steps to the irreducible computation

return (λ (y : Unit).return unit)

In contrast, c2 erases to a different irreducible computation

ε
σ
c (c2) = return (λ (y : Unit).return ((Λς .unit) Unit))

These two irreducible computations can be made equal by reducing under the λ (y : Unit)
binder in εσ

c (c2). The congruence closure of the step relation allows this reduction under
binders. Morever, the closure is symmetric because an EXEFF step may defer or block a
SKELEFF step that is exposed by the erasure.

Typically, when type information is erased from call-by-value languages, type binders
are erased by replacing them with other (dummy) binders. For instance, the expected
definition of erasure would be:

ε
σ
v (Λ(α : τ).v) = λ (x : Unit).εσ

v (v)

This replacement is motivated by a desire to preserve the behaviour of the typed terms.
By dropping binders, values might be turned into computations that trigger their side-
effects immediately, rather than at the later point where the original binder was eliminated.
However, there is no call for this circumspect approach in our setting, as our grammatical
partition of terms in values (without side-effects) and computations (with side-effects)
guarantees that this problem cannot happen when we erase values to values and computa-
tions to computations. Nevertheless, when adding recursion to the language, care is needed
to preserve the termination behavior of values under erasure, though we believe this is not
a problem as appropriate recursive constructs are invoked only at the computation level.

7 Elaboration to a Language Without Effects

This section considers an alternative backend for EXEFF, called NOEFF. In contrast to
SKELEFF, NOEFF’s types are explicit about whether or not effects can be used, but implicit
about which effects in particular are used.

Given that NOEFF’s types track whether effects are used or not, its name may seem
contradictory. Yet, the calculus is intended to model a purely functional approach to im-
plementing handlers, e.g., in the pure fragment of OCaml or in Haskell, where there is
no native support for algebraic effects (thus the name NOEFF). In such pure languages,
algebraic effects are modeled by means of a user-defined encoding (Kammar et al., 2013;
Pretnar et al., 2017; Kiselyov & Sivaramakrishnan, 2016; Leijen, 2017) and the type
constructors used by these encodings reveal whether effectful or pure computations are
encoded. Here, to keep NOEFF small, we encapsulate the particular encoding details—



ZU064-05-FPR article 29 May 2020 10:32

Explicit Effect Subtyping 31

Terms

value t ::= x | unit | fun x : A 7→ t | t1 t2 | Λα.t | t A | Λ(ω : π).t | t γ | t B γ | return t
| h | let x = t1 in t2 | Op t1 (y : B.t2) | do x← t1; t2 | handle tc with th

handler h ::= {return (x : A) 7→ tr, [Opxk 7→ tOp]Op∈O}

Types
type A,B ::= α | Unit | A→ A | AV B | π ⇒ A | Comp A | ∀α.A

coercion type π ::= A6 B

Coercions

γ ::= ω | 〈Unit〉 | 〈α〉 | γ1→ γ2 | γ1V γ2 | handToFun γ1 γ2 | funToHand γ1 γ2
| ∀α.γ | π ⇒ γ | comp γ | return γ | unsafe γ

Fig. 13: NOEFF Syntax

which could be implemented in a library—and present the effect functionality as opaque
primitives in NOEFF.

7.1 Syntax of NOEFF

Figure 13 presents the syntax of NOEFF. Notably NOEFF replaces EXEFF’s two syntactic
sorts of values and computations by a single syntactic sort of terms that combines their
syntactic forms. The four absent forms are dirt and skeleton abstraction and application,
as NOEFF does not feature either dirt or skeletons. Similarly, EXEFF’s syntactic sorts for
value types T and computation types C are merged into a single sort of types A. Here
EXEFF’s computation types of the form T ! ∆ are replaced by NOEFF’s computation types
Comp A without dirt. The absence of dirt can also be seen in NOEFF’s coercion types π ,
which do not feature a form for dirt subtyping.

Finally, NOEFF features adapted versions of EXEFF’s type coercions. Absent are those
related to dirt and skeletons, and the computation type coercion is abstracted to the form
(comp γ) which does not feature a dirt coercion. There are also four new coercion forms
(handToFun γ1 γ2, funToHand γ1 γ2, return γ and unsafe γ) which enable the elabo-
ration from EXEFF into NOEFF; we explain their semantics when we discuss typing and
their purpose when explaining the elaboration.

7.2 Typing of NOEFF

We now turn to typing of NOEFF. First, we introduce NOEFF typing environments; they
are identical to those for EXEFF, modulo dirt and skeleton information:

Γ ::= ε | Γ,α | Γ,x : A | Γ,ω : π

The remainder of this section gives the typing judgements for terms (Section 7.2.1) and
coercions (Section 7.2.2); uninteresting judgements like well-formedness of types (Γ À A)
and well-formedness of constraints (Γ π̀ π) are included in Appendix E.
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Γ t̀ t : A Term Typing

(x : A) ∈ Γ

Γ t̀ x : A Γ t̀ unit : Unit
Γ À A Γ,x : A t̀ t : B

Γ t̀ (fun x : A 7→ t) : A→ B

Γ,α t̀ t : A

Γ t̀ Λα.t : ∀α.A

Γ À A Γ t̀ t : ∀α.B

Γ t̀ t A : B[A/α]

Γ t̀ t : A Γ c̀o γ : A6 B

Γ t̀ t B γ : B

Γ,x : A t̀ tr : Comp B
[
(Op : A1→ A2) ∈ Σ Γ,x : A1,k : A2→ Comp B t̀ tOp : Comp B

]
Op∈O

Γ t̀ {return (x : A) 7→ tr, [Opxk 7→ tOp]Op∈O} : AV B

Γ π̀ π Γ,ω : π t̀ t : A

Γ t̀ Λ(ω : π).t : π ⇒ A

Γ t̀ t : π ⇒ A Γ c̀o γ : π

Γ t̀ t γ : A

Γ t̀ t1 : A→ B Γ t̀ t2 : A

Γ t̀ t1 t2 : B

Γ t̀ t1 : A Γ,x : A t̀ t2 : B

Γ t̀ let x = t1 in t2 : B

Γ t̀ t : A

Γ t̀ return t : Comp A

(Op : A1→ A2) ∈ Σ Γ t̀ t1 : A1 Γ,y : A2 t̀ t2 : Comp B

Γ t̀ Op t1 (y : A2.t2) : Comp B

Γ t̀ t1 : Comp A Γ,x : A t̀ t2 : Comp B

Γ t̀ do x← t1; t2 : Comp B

Γ t̀ th : AV B Γ t̀ tc : Comp A

Γ t̀ handle tc with th : Comp B

Fig. 14: NOEFF Term Typing

7.2.1 Term Typing

Typing for NOEFF terms is given by judgement Γ t̀ t : A, which is presented in Figure 14.
The rules are similar to those of IMPEFF and EXEFF, with the exception of dirt and skeleton
features, which are absent in NOEFF.

There is one subtle point: By design, type AV B classifies handlers that handle terms
of type Comp A and produce results of type Comp B. This way, we enforce that handlers
always take computations to computations. If the input is not a computation, we can use a
regular function instead of a handler. So this restriction matters little.

More importantly, by forcing the output to be a computation, we avoid a potential
source of unsoundness in NOEFF. Indeed, because the type system does not track which
operations are performed in the input computation, we cannot tell whether or not they will
all be handled. Of course, we do want any operation that is not handled to be forwarded to
the output, just like in EXEFF. Hence, because we cannot statically tell in NOEFF whether
any operations will be forwarded, to remain on the safe side we have to assume that there
may be some. Thus, with forwarded operations, the output must be a computation. We will
see that this causes additional difficulties in the elaboration from EXEFF to NOEFF.

7.2.2 Coercion Typing

Coercion typing is given by judgement Γ c̀o γ : π , presented in Figure 15. Most of the rules
are straightforward so we only focus on the four new coercion forms.
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Γ c̀o γ : π Coercion Typing

(ω : π) ∈ Γ

Γ c̀o ω : π Γ c̀o 〈Unit〉 : Unit6 Unit

α ∈ Γ

Γ c̀o 〈α〉 : α 6 α

Γ c̀o γ1 : A2 6 A1 Γ c̀o γ2 : B1 6 B2

Γ c̀o γ1→ γ2 : (A1→ B1)6 (A2→ B2)

Γ c̀o γ1 : Comp A2 6 Comp A1 Γ c̀o γ2 : Comp B1 6 Comp B2

Γ c̀o γ1V γ2 : (A1V B1)6 (A2V B2)

Γ c̀o γ1 : A2 6 A1 Γ c̀o γ2 : Comp B1 6 B2

Γ c̀o handToFun γ1 γ2 : (A1V B1)6 (A2→ B2)

Γ c̀o γ1 : A2 6 A1 Γ c̀o γ2 : B1 6 Comp B2

Γ c̀o funToHand γ1 γ2 :6(A1→ B1)6 (A2V B2)

Γ,α c̀o γ : A6 B

Γ c̀o ∀α.γ : ∀α.A6 ∀α.B

Γ π̀ π Γ c̀o γ : A6 B

Γ c̀o π ⇒ γ : π ⇒ A6 π ⇒ B

Γ c̀o γ : A1 6 A2

Γ c̀o comp γ : Comp A1 6 Comp A2

Γ c̀o γ : A1 6 A2

Γ c̀o return γ : A1 6 Comp A2

Γ c̀o γ : A1 6 A2

Γ c̀o unsafe γ : Comp A1 6 A2

Fig. 15: NOEFF Coercion Typing

The first new coercion form (handToFun γ1 γ2) concerns the issue of handler typing
above. It converts a handler, which expects a computation as input, into a function, which
can be applied to a non-computation. The next coercion form (funToHand γ1 γ2) is its
dual; it turns a function into a handler that only specifies how to handle the return case
and forwards all operations.

The third new coercion form (return γ) promotes a value t of any type A to a compu-
tation return t of type Comp A. The last new coercion form (unsafe γ) is the dual of the
previous form. It forces a value of computation type Comp A to a value of type A. This only
works when the value is of the form return t and in that case yields t. If the computation
is of the form Op t1 (y : B.t2), the cast gets stuck; hence its name. We will see that this is
the single source of type unsafety in NOEFF, though we claim that programs elaborated
from EXEFF into NOEFF only use this coercion in a safe way and never get stuck.

7.3 Operational Semantics of NOEFF

Figure 16 presents selected rules of NOEFF’s small-step, call-by-value operational seman-
tics. We omit other rules as they closely follow the rules for EXEFF, except being adjusted
for the amalgamation of values and computations. The complete operational semantics can
be found in Appendix E.

The first rule pushes the cast onto the returned value; in contrast to EXEFF, there is no
effect information to lose, making this reduction type-preserving. This allows the second
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value tR ::= unit | h | fun x : A 7→ t | Λα.t | Λ(ω : π).t | tR B (γ1→ γ2) | tR B (γ1V γ2)
| tR B (handToFun γ1 γ2) | tR B (funToHand γ1 γ2) | tR B ∀α.γ | tR B (π ⇒ γ)
| return tR | Op tR (y : A.t)

t t′ Operational Semantics

(return tR)B (comp γ) return (tR B γ)

do x← return tR; t t[tR/x] handle (return tR) with h tr[tR/x]

(tR1 B (handToFun γ1 γ2)) tR2  (handle (return (tR2 B γ1)) with tR1 )B γ2

handle (return tR1 ) with (t
R
2 B (funToHand γ1 γ2)) (tR2 (tR1 B γ1))B γ2

handle (Op tR1 (y : B.t)) with (tR2 B (funToHand γ1 γ2))

 Op tR1 (y : B.handle t with (tR2 B (funToHand γ1 γ2))) tR B return γ  return (tR B γ)

(return tR)B (unsafe γ) tR B γ

Fig. 16: NOEFF Operational Semantics (Selected Rules)

and third rule which are simplified variants of the ones for NOEFF: because all the coer-
cions can be pushed into tR, there is no need to extract their pure parts before substituting
tR for a variable. The remaining five rules capture the semantics of the newly introduced
coercion forms, exactly as described in Section 7.2.2.

The NOEFF Metatheory We have proven a weak form of type safety for NOEFF in terms
of type preservation and (partial) progress theorems. The latter characterises the way in
which well-typed terms can get stuck.

Theorem 7.1 (Preservation)
If Γ t̀ t : A and t t′, then Γ t̀ t′ : A.

Theorem 7.2 (Partial Progress)
If Γ t̀ t : A then either (a) t is a value, (b) t t′, or (c) t is “stuck”.

Stuck terms are defined as follows:

tS ::= Op tR (y : A.t)B unsafe γ | tS A | tS B γ | tS γ | tS t | tR tS | let x = tS in t | return tS

| Op tS (y : A.t) | do x← tS; t | handle tc with tS | handle tS with tR

The first case is the essential one, while the remaining ones just provide an evaluation
context around it. Hence, terms only get stuck when an unsafe coercion is applied to an
operation. As we have already indicated, we claim that elaborated NOEFF programs never
end up in this situation.
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7.4 Elaboration of EXEFF to NOEFF

7.4.1 Type Elaboration

Figure 17 presents the elaboration of value types (Γ T̀ T : τ A ) and computation types
(Γ C̀ C : τ A ). The latter captures the main idea of the whole elaboration: when the dirt
∆ of a computation type is empty, the elaboration of the computation type T ! ∆ is just the
elaboration of the value type T . If it is non-empty, the elaborated value type A is wrapped
in a computation type, Comp A. We cannot always tell whether ∆ is empty or not, namely
in case it is a dirt variable δ . Our conservative solution is to assume that dirt variables are
also non-empty. This works because we can always represent a term t of type A in terms of
a trivial computation return t of type Comp A.

Most cases for value types are straightforward, but a few are worth mentioning. Firstly,
to respect the particularities of NOEFF handler types explained in Section 7.2.1, we dis-
tinguish two different cases for elaborating EXEFF. Recall that if a computation type has
an empty dirt, it is elaborated to some pure type A, not a computation type Comp A that
handlers expect. Correspondingly, handler types with empty input dirts are elaborated into
NOEFF function types. If the dirt is non-empty, we unavoidably elaborate to a NOEFF

handler type. Note that in the latter case, we ignore whether or not the output computation
type has an empty dirt; the NOEFF handler type always implicitly assumes an output
computation type.

Secondly, since dirts and skeletons are absent from NOEFF, the elaboration drops uni-
versal quantification over skeletons and dirts, as well as dirt subtyping qualifiers.

Coercion Elaboration We now turn to the elaboration of EXEFF coercions to NOEFF

coercions. Most cases are straightforward and either copy a EXEFF coercion to its NOEFF

counterpart, or drop a dirt- or skeleton-related EXEFF construct that is not present in
NOEFF. Hence, we only discuss the interesting cases here; the complete definition can
be found in Appendix F.

Two groups of rules do deserve additional explanation. The first group concerns the
elaboration of handler coercions. If we compare the input dirts of the source and target
handler types of the coercion, there are three different cases: either both are empty, both
are non-empty, or the source input dirt is non-empty and the target input dirt is empty.
The fourth combination is not possible due to the monotonicity of subtyping and the
contravariance in the input argument.

In the first case, both the source and the target EXEFF type elaborate to NOEFF function
types, and thus the coercion is elaborated to a function coercion:

Γ c̀o γ1 : T2 ! /06 T1 ! /0 γ
′
1 Γ c̀o γ2 : C1 6 C2 γ

′
2

Γ c̀o γ1V γ2 : (T1 ! /0V C1)6 (T2 ! /0V C2) γ
′
1→ γ

′
2

In the second case, both types elaborate to NOEFF handler types, and thus the whole
coercion is elaborated to a NOEFF handler coercion:

nonEmpty(∆1) nonEmpty(∆2)

Γ c̀o γ1 : (T2 ! ∆2 6 T1 ! ∆1) γ
′
1 Γ c̀o γ2 : T ′1 6 T ′2 γ

′
2 Γ c̀o γ3 : ∆

′
1 6 ∆

′
2

Γ c̀o (γ1V (γ2 ! γ3)) : ((T1 ! ∆1)V (T ′1 ! ∆
′
1))6 ((T2 ! ∆2)V (T ′2 ! ∆

′
2)) γ

′
1V comp γ

′
2
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nonEmpty(∆) Conservative Non-Empty Dirt

nonEmpty(δ ) nonEmpty({Op}∪∆)

Γ T̀ T : τ  A Value Type Elaboration

(α : τ) ∈ Γ

Γ T̀ α : τ  α Γ T̀ Unit : Unit Unit

Γ T̀ T : τ1 A Γ C̀ C : τ2 B

Γ T̀ T→ C : τ1→ τ2 A→ B

Γ T̀ T : τ1 A Γ C̀ C : τ2 B

Γ T̀ T ! /0V C : τ1V τ2 A→ B

Γ T̀ T1 : τ1 A Γ T̀ T2 : τ2 B nonEmpty(∆1)

Γ T̀ (T1 ! ∆1V T2 ! ∆2) : τ1V τ2 AV B

Γ,ς T̀ T : τ  A

Γ T̀ ∀ς .T : ∀ς .τ  A

Γ,α : τ1 T̀ T : τ2 A

Γ T̀ ∀(α : τ1).T : τ2 ∀α.A

Γ,δ T̀ T : τ  A

Γ T̀ ∀δ .T : τ  A

Γ T̀ T : τ  A

Γ T̀ (∆1 6 ∆2)⇒ T : τ  A

Γ T̀ T1 : τ1 B1 Γ T̀ T2 : τ1 B2 Γ T̀ T : τ  A

Γ T̀ (T1 6 T2)⇒ T : τ  (B1 6 B2)⇒ A

Γ C̀ C1 : τ1 B1 Γ C̀ C2 : τ1 B2 Γ T̀ T : τ  A

Γ T̀ (C1 6 C2)⇒ T : τ  (B1 6 B2)⇒ A

Γ C̀ C : τ  A Computation Type Elaboration

Γ T̀ T : τ  A

Γ C̀ T ! /0 : τ  A

nonEmpty(∆) Γ T̀ T : τ  A

Γ C̀ T ! ∆ : τ  Comp A

Fig. 17: Elaboration of EXEFF Types to NOEFF Types

In the third case the elaborated source type is a handler type and the target type a function
type. Here we use the handToFun coercion to bridge between the two. There are two
subcases to consider though, depending on whether the source output dirt is empty or not:

nonEmpty(∆1)

Γ c̀o γ1 : T2 6 T1 γ
′
1 Γ c̀o γ2 : (T ′1 6 T ′2) γ

′
2 Γ c̀o γ3 : /06 ∆1 Γ c̀o γ4 : /06 ∆

′
2

Γ c̀o (γ1 ! γ3V γ2 ! γ4) : ((T1 ! ∆1V T ′1 ! /0)6 (T2 ! /0V T ′2 ! ∆
′
2)) handToFun γ

′
1 (unsafe γ

′
2)

nonEmpty(∆1) nonEmpty(∆′1)
Γ c̀o γ1 : T2 6 T1 γ

′
1 Γ c̀o γ2 : (T ′1 6 T ′2) γ

′
2 Γ c̀o γ3 : /06 ∆1 Γ c̀o γ4 : ∆

′
1 6 ∆

′
2

Γ c̀o (γ1 ! γ3V γ2 ! γ4) : ((T1 ! ∆1V T ′1 ! ∆
′
1)6 (T2 ! /0V T ′2 ! ∆

′
2)) handToFun γ

′
1 γ
′
2

In the former case, NOEFF does not respect the emptiness in the elaborated handler type,
but does respect it in the elaboration of γ2. To bridge the discrepancy that arises here,
we insert an unsafe coercion. In the latter case, no discrepancy arises, and no unsafe

coercion is needed.
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The second group of interest concerns the elaboration of computation type coercions.
Again we distinguish three different cases based on the source and target dirt. If both are
empty, the computation type coercion is elaborated like the underlying value type coercion
γ1:

Γ c̀o γ1 : T1 6 T2 γ
′
1 Γ c̀o γ2 : /06 /0

Γ c̀o (γ1 ! γ2) : (T1 ! /06 T2 ! /0) γ
′
1

If both are non-empty, we elaborate to a NOEFF computation type coercion comp γ ′1:

Γ c̀o γ1 : T1 6 T2 γ
′
1 Γ c̀o γ2 : /06 ∆2 nonEmpty(∆2)

Γ c̀o (γ1 ! γ2) : (T1 ! /06 T2 ! ∆2) return γ
′
1

In the third case, there is a mismatch because the source is pure and the target is impure;
we bridge this with a return coercion:

Γ c̀o γ1 : T1 6 T2 γ
′
1 Γ c̀o γ2 : ∆1 6 ∆2 nonEmpty(∆1) nonEmpty(∆2)

Γ c̀o (γ1 ! γ2) : (T1 ! ∆1 6 T2 ! ∆2) comp γ
′
1

7.4.2 Value Elaboration

Again, the elaboration of EXEFF values into NOEFF terms is mostly straightforward, so we
only discuss the interesting cases here; the complete definition can be found in Appendix F.
There are two cases of interest: handlers and dirt applications.

Handlers We have three rules describing different cases of elaborating handlers of type
Tx ! O V T ! ∆. Recall from Section 7.4.1 that if O = /0, handlers need to be elaborated
into functions, which is described by the first of these three rules:

Γ T̀ T : τ  A Γ,x :T c̀ cr : C t

Γ v̀ {return (x : T) 7→ cr} : T ! /0V C fun (x : A) 7→ t

The second rule describes the case where O is non-empty, but ∆ is empty:

nonEmpty(O) Γ T̀ Tx : τ  A Γ,x :Tx c̀ cr : T ! /0 tr[
(Op : TOp

1 → TOp
2 ) ∈ Σ T̀ TOp

i : τ
Op
i  AOp

i Γ,x : TOp
1 ,k : TOp

2 → T ! /0 c̀ cOp : T ! /0 tOp
]
Op∈O

Γ v̀ {return (x : Tx) 7→ cr, [Opxk 7→ cOp]Op∈O} : Tx ! O V T ! /0

 {return (x : A) 7→ return tr,
[
Opxk 7→ return tOp[k B 〈AOp

1 〉 → unsafe 〈AOp
2 〉/k]

]
Op∈O}

Since O is non-empty, we do elaborate a handler into a handler, but there is an important
caveat. Recall from 7.2.1 that to ensure safe forwarding of unhandled operations, handlers
take computations to computations. But as ∆ is empty, handler clauses of type T ! /0 are
elaborated to terms of type A (the elaboration of T), not Comp A as expected. We amend
this by wrapping them with a return. However, the handled continuations now include an
extraneous return, which we remove with an unsafe coercion before plugging them into
the operation clause that expects k to result in A, not Comp A.
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In the third rule, both O and ∆ are non-empty, and the elaboration is structural:

nonEmpty(O) nonEmpty(∆) Γ T̀ Tx : τ  A Γ,x :Tx c̀ cr : T ! ∆ tr[
(Op : TOp

1 → TOp
2 ) ∈ Σ Γ,x : TOp

1 ,k : TOp
2 → T !∆ c̀ cOp : T !∆ tOp

]
Op∈O

Γ v̀ {return (x : Tx) 7→ cr, [Opxk 7→ cOp]Op∈O} : Tx ! O V T ! ∆

 {return (x : A) 7→ tr, [Opxk 7→ tOp]Op∈O}

Dirt applications The elaboration of dirt applications possibly needs to bridge between an
impure and a pure type. Consider for instance a EXEFF value v of type ∀δ .Unit→ Unit ! δ

which is applied to the empty dirt; thus the type of the dirt application is Unit→ Unit ! /0.
The elaboration of the former type is Unit→ Comp Unit, while the latter is Unit→ Unit.

Such elaborations are handled by the following rule:

Γ v̀ v : ∀δ .T t δ 7→ ∆;Γ v̀ T γ

Γ v̀ v ∆ : T[∆/δ ] t B γ

where for a given v of type ∀δ .T , we need a coercion γ from the elaboration of T (recall this
is done under the assumption nonEmpty(δ )) to the elaboration of T[∆/δ ]. Such coercion is
produced by a judgement δ 7→ ∆;Γ v̀ T γ , driven by the structure of T . This judgement
is defined in Figure 18 alongside with the judgment δ 7→ ∆;Γ c̀ C γ for computation
types. In addition, there are two dual judgements ∆ 7→ δ ;Γ v̀ T γ and ∆ 7→ δ ;Γ c̀ C γ

for the opposite coercions, which are used on types in contravariant positions. We have
omitted their definitions because they are obtained by flipping the sides of all 7→ arrows,
and replacing unsafe with return and handToFun with funToHand. Most rules of these
judgements are straightforward congruences.

The main rule of interest is the one that produces an unsafe coercion where the dirt
variable δ in a computation type T ! δ is instantiated to the empty dirt /0 (Rule FICMP2).
In that case, the elaboration of the polymorphic abstraction conservatively assumes the
computation is impure, while the elaboration of its instantiation accurately knows it is
pure.

A further case that deserves attention is that of the handler type, where four different
rules (Rules FIHAND1, FIHAND2, FIHAND3, and FIHAND4) cover the possible scenarios
related to elaboration into handler and function types.

Note that in Rule FICOABSTY we have restricted the case of T1 6 T2⇒ T to situations
where T1 and T2 are both types variables. This is not a severe restriction because subtyping
constraints can be simplified to this form; this simplification is precisely what our type
inference algorithm does. Moreover, there is a good reason to impose the syntactic restric-
tion. Consider the trivial reflexive subtyping constraint (Unit→ Unit ! δ ) 6 (Unit→
Unit ! δ ). If we conservatively assume that δ is non-empty, the constraint is elaborated
to (Unit→ Comp Unit) 6 (Unit→ Comp Unit), whereas, if δ is instantiated to /0, the
constraint is elaborated to (Unit→ Unit)6 (Unit→ Unit). Hence, we would need to be
able to coerce a coercion for the former constraint to a coercion for the latter, and vice versa.
This would require a complication of the NOEFF language with additional coercion forms
to accomplish this coercion of coercions, which, happily, the above syntactic restriction
allows us to avoid.
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δ 7→ ∆;Γ v̀ T γ Value Type Coercion from Impure Dirt Instantiation

δ 7→ ∆;Γ v̀ Unit 〈Unit〉
FIUNIT

∆ 7→ δ ;Γ v̀ T γ1 δ 7→ ∆;Γ c̀ C γ2

δ 7→ ∆;Γ v̀ T→ C γ1→ γ2
FIARR

∆ 7→ δ ;Γ v̀ T γ1 δ 7→ ∆;Γ c̀ C γ2

δ 7→ ∆;Γ v̀ T ! /0V C γ1→ γ2
FIHAND1

∆2[ /0/δ ] = /0 /0 7→ δ ;Γ v̀ T1 γ1 δ 7→ /0;Γ v̀ T2 γ2

δ 7→ /0;Γ v̀ T1 ! δ V T2 ! ∆2 handToFun γ1 (unsafe γ2)
FIHAND2

nonEmpty(∆2[ /0/δ ]) /0 7→ δ ;Γ v̀ T1 γ1 δ 7→ /0;Γ v̀ T2 γ2

δ 7→ /0;Γ v̀ T1 ! δ V T2 ! ∆2 handToFun γ1 (comp γ2)
FIHAND3

nonEmpty(∆1[∆/δ ])
∆ 7→ δ ;Γ c̀ T1 ! ∆1 γ1 δ 7→ ∆;Γ,δ ′ c̀ T2 ! δ

′ γ2 freshδ
′

δ 7→ ∆;Γ v̀ T1 ! ∆1V T2 ! ∆2 γ1V γ2
FIHAND4

δ 7→ ∆;Γ,ς v̀ T γ

δ 7→ ∆;Γ v̀ ∀ς .T γ
FISKELABS

δ 7→ ∆;Γ,α :τ v̀ T γ

δ 7→ ∆;Γ v̀ ∀α :τ.T ∀α.γ
FITYABS

δ 7→ ∆;Γ,δ ′ v̀ T γ

δ 7→ ∆;Γ v̀ ∀δ ′.T γ
FIDIRTABS

δ 7→ ∆;Γ v̀ T γ

δ 7→ ∆;Γ v̀ α1 6 α2⇒ T α1 6 α2⇒ γ
FICOABSTY

δ 7→ ∆;Γ v̀ T γ

δ 7→ ∆;Γ v̀ ∆1 6 ∆2⇒ T γ
FICOABSDIRT

δ 7→ ∆;Γ c̀ C γ Computation Type Coercion from Impure Dirt Instantiation

δ 7→ ∆;Γ v̀ T γ

δ 7→ ∆;Γ c̀ T ! /0 γ
FICMP1

δ 7→ /0;Γ v̀ T γ

δ 7→ /0;Γ c̀ T ! δ  unsafe γ
FICMP2

nonEmpty(∆′[∆/δ ]) δ 7→ ∆;Γ v̀ T γ

δ 7→ ∆;Γ c̀ T ! ∆
′ comp γ

FICMP3

∆ 7→ δ ;Γ v̀ T γ Value Type Coercion to Impure Dirt Instantiation

defined dually to δ 7→ ∆;Γ v̀ T γ

∆ 7→ δ ;Γ c̀ C γ Computation Type Coercion to Impure Dirt Instantiation

defined dually to δ 7→ ∆;Γ c̀ T γ

Fig. 18: Type Coercions from and to an Impure Dirt Instantiation

7.4.3 Computation Elaboration

Finally, Figure 19 defines how EXEFF computations are elaborated into NOEFF terms.
There are a number of interesting cases.
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Γ c̀ c : C t Computation Elaboration

Γ v̀ v1 : T→ C t1 Γ v̀ v2 : T t2
Γ c̀ v1 v2 : C t1 t2

CAPP

Γ v̀ v : T t1 Γ,x : T c̀ c : C t2
Γ c̀ let x = v in c : C let x = t1 in t2

CLET
Γ v̀ v : T t

Γ c̀ return v : T ! /0 t
CRET

(Op : T1→ T2) ∈ Σ Γ T̀ T1 : τ1 A
Γ T̀ T2 : τ2 B Γ v̀ v : T1 tv Γ,x : T2 c̀ c : T ! ∆ tc Op ∈ ∆

Γ c̀ Op v (y : T2.c) : T ! ∆ Op tv (y : B.tc)
COP

Γ c̀ c1 : T1 ! /0 t1 Γ,x : T1 c̀ c2 : T2 ! /0 t2
Γ c̀ (do x← c1;c2) : T2 ! /0 let x = t1 in t2

CDO1

nonEmpty(∆) Γ c̀ c1 : (T1 ! ∆) t1 Γ,x : T1 c̀ c2 : (T2 ! ∆) t2
Γ c̀ do x← c1;c2 : (T2 ! ∆) do x← t1; t2

CDO2

Γ c̀ c : T ! /0 t2 Γ v̀ v : (T ! /0V C) t1
Γ c̀ (handle c with v) : C t1 t2

CHANDLE1

Γ c̀ c : T1 ! ∆1 tc
nonEmpty(∆1) Γ v̀ v : (T1 ! ∆1V T2 ! /0) tv Γ T̀ T2 : τ  A

Γ c̀ (handle c with v) : T2 ! /0 (handle tc with tv)B unsafe 〈A〉
CHANDLE2

nonEmpty(∆2)
Γ c̀ c : T1 ! ∆1 tc Γ v̀ v : (T1 ! ∆1V T2 ! ∆2) tv nonEmpty(∆1)

Γ c̀ (handle c with v) : T2 ! ∆2 handle tc with tv
CHANDLE3

Γ c̀ c : C1 t Γ c̀o γ : C1 6 C2 γ
′

Γ c̀ cB γ : C2 t B γ
′

CCAST

Fig. 19: Elaboration of EXEFF Computations to NOEFF Terms

Firstly, because (return v) has an empty dirt, its elaborated form drops the return

(Rule CRET). Secondly, do- computations are translated to either let- or do- terms,
depending on whether the dirt is empty or not (Rules CDO1 and CDO2, respectively).
Thirdly, handler applications are elaborated in three possible ways. If the input dirt of
the handler is empty, it is elaborated as a function and thus the handler application too
should be elaborated as function application (Rule CHANDLE1). Otherwise, a handler
application is indeed elaborated as a handler application. If the output dirt is empty, the
translation is straightforward (Rule CHANDLE3). However, if the output dirt is empty,
then the elaboration of the handler still produces a computation where none is expected.
Hence, we insert an unsafe coercion to bridge the gap (Rule CHANDLE2).

Example 7.3



ZU064-05-FPR article 29 May 2020 10:32

Explicit Effect Subtyping 41

Elaboration of terms to NOEFF again depends on the type of a EXEFF term. A monomor-
phic function

let f : (Unit→ Unit ! /0)→ Unit ! /0
= fun (g : Unit→ Unit ! /0) 7→ g unit

in . . .

is erased to

let f : (Unit→ Unit)→ Unit

= fun (g : Unit→ Unit) 7→ g unit

in . . .

as before, while its polymorphic variant

let f : ∀ς .∀α : ς .∀α ′ : ς .∀δ .∀δ ′.(α 6 α ′)⇒ (δ 6 δ ′)⇒ (Unit→ α ! δ )→ α ′ ! δ ′

= Λς .Λ(α : ς).Λ(α ′ : ς).Λδ .Λδ ′.Λ(ω : α 6 α ′).Λ(ω ′ : δ 6 δ ′).

fun (g : Unit→ α !δ ) 7→ ((g unit)B (ω !ω ′))

in . . .

is conservatively elaborated to an impure

let f : ∀α.∀α ′.(α 6 α ′)⇒ (Unit→ Comp α)→ Comp α ′

= Λα.Λα ′.Λ(ω : α 6 α ′).

fun (g : Unit→ Comp α) 7→ ((g unit)B ω)

in . . .

Note that in contrast to the erasure to SKELEFF, we keep type variables α and α ′, while
removing any mention of their skeleton ς . As before, we remove any effect annotations,
conservatively assuming that dirt variables are impure, but keep an explicit coercion ω

between types.
Recall that in EXEFF, the application f id was pure, and so must be its elaboration.

However, since f itself was conservatively assumed to be impure, the application must be
suitably coerced. In particular, the elaboration of

f Unit Unit Unit /0 /0 〈Unit〉 /0 /0 (fun (x : Unit) 7→ return x)

is

((( f Unit Unit)B γ1)B γ2) 〈Unit〉 (fun (x : Unit) 7→ x)

where for π = Unit 6 Unit, the coercion γ1, which lifts a pure function into one that
returns a computation, is given by

π ⇒ (〈Unit〉 → return 〈Unit〉)→ comp 〈Unit〉
: (π ⇒ (Unit→ Comp Unit)→ Comp Unit)6 (π ⇒ (Unit→ Unit)→ Comp Unit)

while γ2, which extracts back the value from a pure computation is:

π ⇒ (〈Unit〉 → 〈Unit〉)→ unsafe 〈Unit〉
: (π ⇒ (Unit→ Unit)→ Comp Unit)6 (π ⇒ (Unit→ Unit)→ Unit)
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On a side note, observe the removal of return in the identity as its elaboration is a pure
function. For an impure function

f Unit Unit Unit {Tick} {Tick,Tock} 〈Unit〉 ({Tick}∪ /0{Tock})

(fun x : Unit 7→ Tick x (y : Unit.((return y)B 〈Unit〉 ! /0{Tick})))

the elaboration

((( f Unit Unit)B γ
′
1)B γ

′
2) 〈Unit〉

(fun x : Unit 7→ Tick x (y : Unit.(yB return 〈Unit〉)))

is similar, except that the coercions γ ′1 = γ ′2 are both trivial:

π ⇒ (〈Unit〉 → comp 〈Unit〉)→ comp 〈Unit〉
: (π ⇒ (Unit→ Comp Unit)→ Comp Unit)6 (π ⇒ (Unit→ Comp Unit)→ Comp Unit)

and may be removed by an optimizer. Also note that just as in id, the return vanishes in the
elaboration, though in this case it is reintroduced by the elaboration of the coercion /0{Tick}.

7.4.4 Metatheory of Elaboration

We have proven in Abella that the elaboration of EXEFF values and computations into
NOEFF terms preserves typing.

Theorem 7.4 (Type Preservation)
• If Γ v̀ v : T t and Γ̀ Γ Γ′ then Γ T̀ T : τ A and Γ′ t̀ t : A.
• If Γ c̀ c : C t and Γ̀ Γ Γ′ then Γ C̀ C : τ B and Γ′ t̀ t : B.

A key lemma in the theorem’s proof establishes the appropriate typing of the coercion
produced by the δ 7→ ∆;Γ v̀ T γ judgement.

Lemma 7.5 (From Impure Coercion Typing)
If δ 7→ ∆;Γ v̀ T γ and Γ,δ T̀ T : τ A then there exists a B such that Γ T̀ T[∆/δ ] :
τ B and Γ c̀o γ : A6 B.

Semantic preservation for the elaboration from EXEFF to NOEFF turns out to be much
more complicated than for the elaboration to SKELEFF. Indeed, the congruence closure of
the step relation is not sufficient in the case of NOEFF.

For instance, consider the following EXEFF evaluation step:

(Λδ .fun x : Unit 7→ v) /0 v fun x : Unit 7→ v[ /0/δ ]

where the dirt abstraction (Λδ .fun x : Unit 7→ v) has type ∀δ .Unit→ Unit ! {Op}∪δ

and its application to /0 has type Unit→ Unit ! {Op}∪ /0. Suppose that the right-hand
side elaborates to the NOEFF term fun x : Unit 7→ v′. Then the left-hand side elaborates
to fun (x : Unit 7→ v′) B (〈Unit〉 → comp 〈Unit〉); observe that the function coercion is
nothing more than a reflexivity coercion. Neither of these two elaborated NOEFF terms is
reducible. In particular, we cannot eliminate the reflexivity coercion by reduction and thus
the two terms are not related by a congruence closure of the step relation.

Instead, we believe that a semantic notion of equivalence is needed: contextual equiv-
alence (Morris Jr, 1969). Informally, this notion expresses that two terms are equivalent
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iff, when placed in any “appropriate” program context, the resulting programs reduce to
normal forms that are equivalent under some other, simpler notion of equivalence such as
syntactic equality.

The precise formal definition depends on the particular setting it is used in. In our setting
there are a number of complicating factors that need to be taken into account.

• Firstly, we are dealing with two mutually recursive syntactic sorts for terms, values
and computations. This calls for four different mutually recursive sorts of program
contexts: ones that take a value/computation and yield a value/computation.

• Secondly, we need to consider what simpler notion of equivalence to use and how to
restrict program contexts so that we can use it. A common approach is to consider
only contexts that have some atomic type as a result, such as naturals or integers,
where syntactic equality is appropriate. We believe that approach works here too.
Indeed, we can expect that an appropriate computation context handles all operations
and yields a pure program.

• Thirdly, we do not want to admit all possible NOEFF contexts. In particular, we do
not want to admit those that get stuck because of an inappropriate use of an unsafe

coercion. Hence, we want to restrict ourselves to those that are the image of a EXEFF

program context.

We leave working out the precise formal definition of contextual equivalence and proving
semantic preservation on top of it a substantial open challenge. Yet, we point to the work of
Bi et al. (2018) as an important source of inspiration. They also deal with an elaboration-
based setting, for disjoint intersection types, and use logical relations as the basis of their
proofs.

8 Related Work & Conclusion

Eff’s Implicit Type System The most closely related work is that of Pretnar (2014) on
inferring algebraic effects for Eff, which is the basis for our implicitly-typed IMPEFF

calculus, its type system and the type inference algorithm. There are three major differences
with Pretnar’s inference algorithm.

Firstly, our work introduces an explicitly-typed calculus. For this reason we have ex-
tended the constraint generation phase with the elaboration into EXEFF and the constraint
solving phase with the construction of coercions.

Secondly, we add skeletons to guarantee erasure. Skeletons also allow us to use the
standard occurs-check during unification. In contrast, unification in Pretnar’s algorithm
performs the occurs-check up to the equivalence closure of the subtyping relation (Fuh
& Mishra, 1990; Simonet, 2003), and needs to take care of appropriately instantiating
all variables in an equivalence class (also called a skeleton). As these classes turn out
to be surrogates for the underlying skeleton types, we have decided to keep the name.
Traytel et al. (2011) propose an alternative approach and first perform a weak unification
algorithm, which is unification with the standard occurs check on what are essentially
skeletons, although this is not an explicit concept in their work.

Finally, Pretnar incorporates garbage collection of constraints (Pottier, 2001). The aim
of this approach is to obtain unique and simple type schemes by eliminating redundant
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constraints. Garbage collection is not suitable for our use as type variables and coercions
witnessing subtyping constraints cannot simply be dropped, but must be instantiated in a
suitable manner, which cannot be done in general.

Consider for instance a situation with type variables α1, α2, α3, α4, and α5 where α1 6
α3, α2 6 α3, α3 6 α4, and α3 6 α5. Suppose that α3 does not appear in the type. Then
garbage collection would eliminate it and replace the constraints by α16α4, α26α4, α16
α5, and α2 6 α5. While garbage collection guarantees that for any ground instantiation of
the remaining type variables, there exists a valid ground instantiation for α3, EXEFF would
need to be extended with joins (or meets) to express a generically valid instantiation like
α1tα2. Moreover, we would need additional coercion formers to establish α1 6 (α1tα2)

or (α1tα2)6 α4.
As these additional constructs considerably complicate the calculus, we propose a sim-

pler solution, especially as we have experienced no blow-up in inference times during
our initial experiments. We use EXEFF as it is for internal purposes, but display types to
programmers in their garbage-collected form.

Calculi with Explicit Coercions The notion of explicit coercions is not new; Mitchell
(1984) introduced the idea of inserting coercions during type inference for ML-based
languages, as a means for explicit casting between different numeric types.

Breazu-Tannen et al. (1991) also present a translation of languages with inheritance
polymorphism into System F, extended with coercions. Although their coercion combina-
tors are very similar to our coercion forms, Breazu-Tannen et al.’s coercions are terms, and
thus cannot be erased.

Much closer to EXEFF is Crary’s coercion calculus for inclusive subtyping (Crary,
2000), from which we borrowed the stratification of value results. Though the coercion
calculus does not support coercion abstraction and other coercion forms that we need for
supporting effects, coercions in Crary’s system are also erasable so they have no runtime
effect.

System FC (Sulzmann et al., 2007) uses explicit type-equality coercions to encode com-
plex language features (e.g. GADTs (Peyton Jones et al., 2006) or type families (Schrijvers
et al., 2008)). Though EXEFF’s coercions are proofs of subtyping rather than type equality,
our system has a lot in common with it, and in particular the “push” rules. A difference
between the two lies in the presence of inversion coercions (that is, coercions that allow
for decomposition of type inequalities), which System FC (and our own earlier work (Saleh
et al., 2018)) includes.

The NOEFF unsafe coercion shows similarities with downcasts in object-oriented lan-
guages and calculi like Featherweight Java (Igarashi et al., 2001), which get stuck when the
object is from the wrong class. A difference to Featherweight Java is that, when successful,
unsafe also destructures a value. This shares similarities with the explicit coercions in the
recent backend calculi for (disjoint) intersection types (d. S. Oliveira et al., 2016; Bi et al.,
2018), which also extract relevant components from composite values.

Future Work Our plans focus on resuming the postponed work on efficient compilation
of handlers. First, we intend to adjust program transformations to the explicit type infor-
mation. We hope that this will not only make the optimizer more robust, but also expose
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new optimization opportunities. Next, we plan to write compilers to both Multicore OCaml
and standard OCaml. Finally, once the compiler shows promising preliminary results, we
plan to extend it to other Eff features such as user-defined types or recursion, allowing us
to benchmark it on more realistic programs.
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A IMPEFF Additional Judgements

Type Well-formedness and Elaboration Since our system discriminates between value
types and computation types, well-formedness of types is checked using two mutually
recursive relations: Γ v̀ty A : τ T (values), and Γ c̀ty C : τ C (computations). We
discuss each one separately below.

Well-formedness for value types is given by the following rules:

α :τ ∈ Γ

Γ v̀ty α : τ  α

Γ v̀ty A : τ1 T Γ c̀ty C : τ2 C

Γ v̀ty A→ C : τ1→ τ2 T→ C

Γ c̀ty C : τ1 C1 Γ c̀ty D : τ2 C2

Γ v̀ty CV D : τ1V τ2 C1V C2 Γ v̀ty Unit : Unit Unit

Γ c̀t π  π Γ v̀ty K : τ  T

Γ v̀ty π ⇒ K : τ  π ⇒ T

Γ,α : τ1 v̀ty S : τ2 T

Γ v̀ty ∀α :τ1.S : τ2 ∀α :τ1.T

Γ,δ v̀ty S : τ  T

Γ v̀ty ∀δ .S : τ  ∀δ .T
Γ,ς v̀ty S : τ  T

Γ v̀ty ∀ς .S : ∀ς .τ  ∀ς .T

The judgement is syntax-directed on the structure of types; each rule corresponds to a value
type syntactic form. Since EXEFF types are a superset of IMPEFF types, the elaboration-
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part (highlighted in gray) is the identity transformation. Hence, the essence of the judge-
ment is to check the well-scopedness of source types.

Well-formedness for computation types is given by the following rule:

Γ v̀ty A : τ  T Γ ∆̀ ∆

Γ c̀ty A ! ∆ : τ  T ! ∆

We ensure that both parts of a computation type (the value type and the dirt) are well-
scoped under Γ, while elaborating the value-type into a proper EXEFF representation.

Constraint Well-formedness and Elaboration Well-formedness for constraints is given
by judgement Γ c̀t ρ ρ , given by the following rules:

Γ v̀ty A : τ  T1 Γ v̀ty B : τ  T2

Γ c̀t A6 B T1 6 T2

Γ c̀ty C : τ  C1 Γ c̀ty D : τ  C2

Γ c̀t C 6 D C1 6 C2

Γ ∆̀ ∆1 Γ ∆̀ ∆2

Γ c̀t ∆1 6 ∆2 ∆1 6 ∆2

Since the dirt syntax is shared between IMPEFF and EXEFF, all three rules check the
constraint components for well-scopedness, but only the type-related constraints are elab-
orated: the elaboration of a dirt constraint is the identity.

Dirt Well-formedness Judgement Γ ∆̀ ∆ checks dirt well-formedness and is given by the
following rules:

Γ ∆̀ /0
δ ∈ Γ

Γ ∆̀ δ

(Op : AOp→ BOp) ∈ Σ Γ ∆̀ ∆

Γ ∆̀ {Op}∪∆

In addition to checking that the dirt is well-scoped (illustrated by the second rule), we also
make sure that all operations in a dirt set are already defined, by looking them up in the
globally visible signature Σ (third rule).

Skeleton Well-formedness Finally, skeleton well-formedness is performed by judgement
Γ τ̀ τ , as given by the following rules:

ς ∈ Γ

Γ τ̀ ς Γ τ̀ Unit

Γ τ̀ τ1 Γ τ̀ τ2

Γ τ̀ τ1→ τ2

Γ τ̀ τ1 Γ τ̀ τ2

Γ τ̀ τ1V τ2

Since skeletons are uni-kinded, this relation is entirely straightforward and is in fact iden-
tical to the well-formedness of System F simple types.
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B EXEFF Additional Judgements

Type Well-formedness Again, preserving the separation between value and computa-
tion types, EXEFF comes with two mutually recursive relation for checking the well-
formedness of types: Γ T̀ T : τ (values), and Γ C̀ C : τ (computations). We discuss each
one separately.

Well-formedness for value types is given by the following rules:

(α : τ) ∈ Γ

Γ T̀ α : τ

Γ T̀ T : τ1 Γ C̀ C : τ2

Γ T̀ T→ C : τ1→ τ2

Γ C̀ C1 : τ1 Γ C̀ C2 : τ2

Γ T̀ C1V C2 : τ1V τ2 Γ T̀ Unit : Unit

Γ ρ̀ π Γ T̀ T : τ

Γ T̀ π ⇒ T : τ

Γ,ς T̀ T : τ

Γ T̀ ∀ς .T : ∀ς .τ
Γ,α : τ1 T̀ T : τ2

Γ T̀ ∀α : τ1.T : τ2

Γ,δ T̀ T : τ

Γ T̀ ∀δ .T : τ

The relation is almost identical to the corresponding one for IMPEFF value types. The only
difference between the two lies in the EXEFF’s impredicative polymorphism and higher-
rank types.

Similarly, well-formedness of computation types is checked via relation Γ C̀ C : τ , given
by a single rule, which is identical to the corresponding one of IMPEFF:

Γ T̀ T : τ Γ ∆̀ ∆

Γ C̀ T ! ∆ : τ

The only difference, again, is that instead of a monotype A, computation types are allowed
to refer to arbitrary System F types T .

Constraint Well-formedness Well-formedness for constraints is given by judgement Γ ρ̀

ρ:

Γ T̀ T1 : τ Γ T̀ T2 : τ

Γ ρ̀ T1 6 T2

Γ C̀ C1 : τ Γ C̀ C2 : τ

Γ ρ̀ C1 6 C2

Γ ∆̀ ∆1 Γ ∆̀ ∆2

Γ ρ̀ ∆1 6 ∆2

Dirt Well-formedness Dirt well-formedness takes the form Γ ∆̀ ∆ and is given by the
following rules:

Γ ∆̀ /0
δ ∈ Γ

Γ ∆̀ δ

(Op : T1→ T2) ∈ Σ Γ ∆̀ ∆

Γ ∆̀ {Op}∪∆

The only difference with the corresponding relation for IMPEFF is that instead of opera-
tions Op having IMPEFF types, they now have EXEFF types. We abuse notation and use Σ

for both the IMPEFF and the EXEFF top-level signature set.
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Γ c̀o γ : ρ Coercion Typing

(ω : π) ∈ Γ

Γ c̀o ω : π

Γ T̀ α : τ

Γ c̀o 〈α〉 : α 6 α

Γ ∆̀ ∆

Γ c̀o 〈∆〉 : ∆6 ∆ Γ c̀o 〈Unit〉 : Unit6 Unit

Γ c̀o γ1 : T2 6 T1 Γ c̀o γ2 : C1 6 C2

Γ c̀o γ1→ γ2 : T1→ C1 6 T2→ C2

Γ c̀o γ1 : C3 6 C1 Γ c̀o γ2 : C2 6 C4

Γ c̀o γ1V γ2 : C1V C2 6 C3V C4

Γ,ς c̀o γ : T1 6 T2

Γ c̀o ∀ς .γ : ∀ς .T1 6 ∀ς .T2

Γ,α : τ c̀o γ : T1 6 T2

Γ c̀o ∀α : τ.γ : ∀α : τ.T1 6 ∀α : τ.T2

Γ,δ c̀o γ : T1 6 T2

Γ c̀o ∀δ .γ : ∀δ .T1 6 ∀δ .T2

Γ c̀o γ : T1 6 T2 Γ ρ̀ π

Γ c̀o π ⇒ γ : π ⇒ T1 6 π ⇒ T2

Γ ∆̀ ∆

Γ c̀o /0∆ : /06 ∆

Γ c̀o γ1 : T1 6 T2 Γ c̀o γ2 : ∆1 6 ∆2

Γ c̀o γ1 ! γ2 : T1 ! ∆1 6 T2 ! ∆2

Γ c̀o γ : ∆1 6 ∆2 (Op : T1→ T2) ∈ Σ

Γ c̀o {Op}∪ γ : {Op}∪∆1 6 {Op}∪∆2

Fig. B 1: EXEFF Coercion Typing

Skeleton Well-formedness Skeleton well-formedness is checked via relation Γ τ̀ τ , given
by the following rules:

ς ∈ Γ

Γ τ̀ ς Γ τ̀ Unit

Γ τ̀ τ1 Γ τ̀ τ2

Γ τ̀ τ1→ τ2

Γ τ̀ τ1 Γ τ̀ τ2

Γ τ̀ τ1V τ2

Γ,ς τ̀ τ

Γ τ̀ ∀ς .τ

The only noticeable difference between this judgement and the corresponding for IMP-
EFF skeletons, is captured in the last rule. We have opted for a System F-based skeleton
structure, thus this relation is identical to the well-formedness of System F types.

Coercion Typing Coercion typing is presented in Figure B 1 and formalizes the intuitive
interpretation of coercions we gave in Section 4.1.

Reflexivity of Arbitrary Types Function reflOf (·) below shows how to create a reflexivity
coercion for an arbitrary value type, computation type, or dirt:

reflOf (α) = 〈α〉 reflOf (T ! ∆) = reflOf (T) ! reflOf (∆)
reflOf (Unit) = 〈Unit〉
reflOf (T→ C) = reflOf (T)→ reflOf (C)
reflOf (C1V C2) = reflOf (C1)V reflOf (C2)
reflOf (∀ς .T) = ∀ς .reflOf (T)
reflOf (∀α : τ.T) = ∀α : τ.reflOf (T) reflOf (δ ) = 〈δ 〉
reflOf (∀δ .T) = ∀δ .reflOf (T) reflOf ( /0) = /0 /0
reflOf (π ⇒ T) = π ⇒ reflOf (T) reflOf ({Op}∪∆) = {Op}∪ reflOf (∆)
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v v v′ Values

v v v′

vB γ  v v′ B γ vR B 〈Unit〉 v vR
v v v′

v τ  v v′ τ

v v v′

v T v v′ T

v v v′

v ∆ v v′ ∆

v v v′

v γ  v v′ γ (vR B (∀ς .γ)) τ  v vR
τ B γ[τ/ς ]

(vR B (∀(α : τ).γ)) T v vR T B γ[T/α] (vR B (∀δ .γ)) ∆ v vR
∆B γ[∆/δ ]

(vR B (π ⇒ γ1)) γ2 v vR
γ2 B γ1 (Λς .v) τ  v v[τ/ς ] (Λα : τ.v) T v v[T/α]

(Λδ .v) ∆ v v[∆/δ ] (Λ(ω : π).v) γ  v v[γ/ω]

Fig. B 2: EXEFF Operational Semantics (Values)

Operational Semantics The complete small-step, call-by-value operational semantics for
EXEFF can be found in Figures B 2 (values) and B 3 (computations).

C Type Inference & Elaboration: Additional Judgements

Elaboration of Types, Constraints, and Typing Environments Below we give the defi-
nitions of elaboration functions elabS(S), elabC(C), elabρ(ρ), and elabΓ(Γ), for value types,
computation types, constraints, and typing environments.

elabS(α) = α

elabS(A→ C) = elabS(A)→ elabC(C)
elabS(CV D) = elabC(C)V elabC(D)
elabS(Unit) = Unit

elabS(∀ς .S) = ∀ς .elabS(S)
elabS(∀α : τ.S) = ∀α : τ.elabS(S)
elabS(∀δ .S) = ∀δ .elabS(S)
elabS(π ⇒ K) = elabρ(π)⇒ elabS(K)

elabC(A !∆) = elabS(A) !∆

elabΓ(ε) = ε

elabΓ(Γ,ς) = elabΓ(Γ),ς
elabΓ(Γ,α : τ) = elabΓ(Γ),α : τ

elabΓ(Γ,δ ) = elabΓ(Γ),δ
elabΓ(Γ,x : S) = elabΓ(Γ),x : elabS(S)
elabΓ(Γ,ω : ρ) = elabΓ(Γ),ω : elabρ(ρ)

elabρ(A6 B) = elabS(A)6 elabS(B)
elabρ(C 6 D) = elabC(C)6 elabC(D)
elabρ(∆1 6 ∆2) = ∆1 6 ∆2

All four are entirely straightforward and essentially traverse each sort, so that IMPEFF

value types A are replaced with EXEFF value types T .

Skeleton Extraction In Section 5 we made use of function skeleton(A), which computes
the skeleton of a type. Its formal definition is given below:
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c c c′ Computations

c c c′

cB γ  c c′ B γ

v1 v v′1
v1 v2 c v′1 v2 (vR B (γ1→ γ2)) v c (v

R (vB γ1))B γ2

v2 v v′2
vT v2 c vT v′2 (fun x : T 7→ c) vR c c[vR/x]

v v v′

let x = v in c c let x = v′ in c

let x = vR in c c c[vR/x]

v v v′

return v c return v′
v v v′

Op v (y : T.c) c Op v′ (y : T.c)

(Op vR (x : T.c))B γ  c Op vR (x : T.(cB γ))

c1 c c′1
do x← c1;c2 c do x← c′1;c2

do x← ((return vR)B (γ1 ! γ
′
1)B . . .B (γn ! γ

′
n));c2 c c2[(vR B γ1 B . . .B γn)/x]

do x← Op vR (y : T.c1);c2 c Op vR (y : T.do x← c1;c2)

v v v′

handle c with v c handle c with v′

handle c with (vR B (γ1V γ2)) c (handle (cB γ1) with vR)B γ2

c c c′

handle c with vT  c handle c′ with vT

handle ((return vR)B (γ1 ! γ
′
1)B . . .B (γn ! γ

′
n)) with h c cr[(vR B γ1 B . . .B γn)/x]

handle (Op vR (y : T.c)) with h c cOp[vR/x,(fun (y : T) 7→ handle c with h)/k]

handle (Op vR (y : T.c)) with h c Op vR (y : T.handle c with h)

Fig. B 3: EXEFF Operational Semantics (Computations)

skeleton(ατ ) = τ

skeleton(Unit) = Unit

skeleton(A→ B !∆) = skeleton(A)→ skeleton(B)
skeleton(A !∆1V B !∆2) = skeleton(A)V skeleton(B)

A skeleton of a type captures its structure (modulo the dirt information), which is directly
expressed in clauses 2, 3, and 4. Hence, in order to capture the whole skeleton of a type,
the only missing piece of information is the skeleton of all type variables appearing in the
type.

As we mentioned in passing in Section 5.3, each type variable is implicitly annotated
with its skeleton, which allows for the complete determination of the skeleton of a type
(clause 1).
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typing environment Γ ::= ε | Γ,ς | Γ,x : τ

Γ èv v : τ Values

(x : τ) ∈ Γ

Γ èv x : τ Γ èv unit : Unit
Γ,x : τ1 èc c : τ2 Γ τ̀ τ1

Γ èv (fun x : τ1 7→ c) : τ1→ τ2

Γ èv v : ∀ς .τ1 Γ τ̀ τ2

Γ èv v τ2 : τ1[τ2/ς ]

Γ,ς èv v : τ

Γ èv Λς .v : ∀ς .τ

Γ,x : τx èc cr : τ
[
(Op : τ1→ τ2) ∈ Σ Γ,x : τ1,k : τ2→ τ èc cOp : τ

]
Op∈O

Γ èv {return (x : τx) 7→ cr, [Opxk 7→ cOp]Op∈O} : τxV τ

Γ èc c : τ Computations

Γ èv v1 : τ1→ τ2 Γ èv v2 : τ1

Γ èc v1 v2 : τ2

Γ èv v : τ1 Γ,x : τ1 èc c : τ2

Γ èc let x = v in c : τ2

Γ èv v : τ

Γ èc return v : τ

(Op : τ1→ τ2) ∈ Σ Γ èv v : τ1 Γ,y : τ2 èc c : τ

Γ èc Op v (y : τ2.c) : τ

Γ èc c1 : τ1 Γ,x : τ1 èc c2 : τ2

Γ èc do x← c1;c2 : τ2

Γ èv v : τ1V τ2 Γ èc c : τ1

Γ èc handle c with v : τ2

Fig. D 1: SKELEFF Typing

D SKELEFF Additional Judgements

Typing Typing for SKELEFF values and computations is given is Figure D 1. As illustrated
by the rules, SKELEFF is essentially System F extended with term-level (but not type-level)
support for algebraic effects.

Operational Semantics Figure D 2 presents the small-step, call-by-value operational se-
mantics of SKELEFF, and Figure D 3 gives the congruence closure of the step relations as
used in Theorem 6.3.

E NOEFF Additional Judgements

Type Well-formedness Well-formedness for NOEFF types is given by judgement Γ À A,
which is given by the following rules:

α ∈ Γ

Γ À α Γ À Unit

Γ À A Γ À B

Γ À A→ B

Γ,α À A

Γ À ∀α.A

Γ À A Γ À B

Γ À AV B

Γ π̀ π Γ À A

Γ À π ⇒ A

Since NOEFF is uni-kinded, the rules simply ensure that types are well-scoped.

Constraint Well-formedness Well-formedness for NOEFF constraints takes the form Γ π̀

π , and is given by the following rule:



ZU064-05-FPR article 29 May 2020 10:32

54 Karachalias, Pretnar, Saleh, Vanderhallen, Schrijvers

value result vR ::= unit | h | fun (x : τ) 7→ c | Λς .v
computation result cR ::= return vR | Op vR (y.c)

v v v′ Values

v v v′

v τ  v v′ τ
(Λς .v) τ  v v[τ/ς ]

c c c′ Computations

v1 v v′1
v1 v2 c v′1 v2

v2 v v′2
vR

1 v2 c vR
1 v′2

(fun (x : τ) 7→ c) vR c c[vR/x]

v v v′

let x = v in c c let x = v′ in c
let x = vR in c c c[vR/x]

v v v′

return v c return v′

v v v′

Op v (y : τ.c) c Op v′ (y : τ.c)

c1 c c′1
do x← c1;c2 c do x← c′1;c2

do x← return vR;c2 c c2[vR/x] do x← Op vR (y : τ.c1);c2 c Op vR (y : τ.do x← c1;c2)

v v v′

handle c with v c handle c with v′
c c c′

handle c with vR c handle c′ with vR

handle (return vR) with h c cr[vR/x]

handle (Op vR (y : τ.c)) with h c cOp[vR/x,(fun (y : τ) 7→ handle c with h)/k]

handle (Op vR (y : τ.c)) with h c Op vR (y : τ.handle c with h)

Fig. D 2: SKELEFF Operational Semantics

Γ À A Γ À B

Γ π̀ A6 B

Though very similar to the corresponding one for EXEFF, since NOEFF features no skele-
tons (or kinds), the above rule simply ensures that the types appearing in the constraint are
both well-scoped.

Operational Semantics The complete small-step operational semantics for NOEFF are
presented in Figure E 1.

F EXEFF to NOEFF: Additional Judgements

Typing Environment Elaboration Elaboration of typing environments is given in Fig-
ure F 1. Essentially the judgement removes all dirt and skeleton information is removed
(including dirt inequalities).
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Terms with holes

value-holed value V v ::= [] | x | unit | Hv | fun (x : τ) 7→Cv | Λς .V v |V v τ

value-holed handler Hv ::= {return (x : τ) 7→Cv
r , [Opxk 7→Cv

Op]Op∈O}
value-holed computation Cv ::= V v

1 V v
2 | let x =V v in Cv | return V v

| Op V v (y : τ.Cv) | do x←Cv
1 ;Cv

2
| handleCv withV v

computation-holed value V c ::= x | unit | Hc | fun (x : τ) 7→Cc | Λς .V c |V c τ

computation-holed handler Hc ::= {return (x : τ) 7→Cc
r , [Opxk 7→Cc

Op]Op∈O}
computation-holed computation Cc ::= [] |V c

1 V c
2 | let x =V c in Cc | return V c

| Op V c (y : τ.Cc) | do x←Cc
1;Cc

2
| handleCc withV c

We define values V v[v],V c[c], and computations Cv[v],Cc[c] in the obvious way.

v≡ v v′ Values

v v v′

v≡ v v′
v≡ v v

v≡ v v′

v′ ≡ v v

v≡ v v′ v′ ≡ v v′′

v≡ v v′′

v≡ v v′

V v[v]≡ v V v[v′]

c≡ c c′

V c[c]≡ v V c[c′]

c≡ c c′ Computations

c c c′

c≡ c c′
c≡ c c

c≡ c c′

c′ ≡ c c

c≡ c c′ c′ ≡ c c′′

c≡ c c′′

v≡ v v′

Cv[v]≡ c Cv[v′]

c≡ c c′

Cc[c]≡ c Cc[c′]

Fig. D 3: Congruence Closures of the Step Relations

Elaboration of EXEFF coercions to NOEFF coercions is given in Figure F 2.
Figure F 3 shows the elaboration of EXEFF values into NOEFF terms.



ZU064-05-FPR article 29 May 2020 10:32

56 Karachalias, Pretnar, Saleh, Vanderhallen, Schrijvers

t t′ Operational Semantics

t1 t′1
t1 t2 t′1 t2

t t′

tR t tR t′ (fun x : A 7→ t) tR t[tR/x]

t t′

t A t′ A

(Λα.t) A t[A/α]

t t′

t γ  t′ γ (Λ(ω : π).t) γ  t[γ/ω]

t1 t′1
let x = t1 in t2 let x = t′1 in t2 let x = tR in t t[tR/x]

t t′

return t return t′

t1 t′1
Op t1 (y : B.t2) Op t′1 (y : B.t2)

t1 t′1
do x← t1; t2 do x← t′1; t2

do x← return tR; t t[tR/x] do x← (Op tR (y : A.t1)); t2 Op tR (y : A.do x← t1; t2)

th t′h
handle tc with th handle tc with t′h

tc t′c
handle tc with tRh  handle t′c with tRh

handle (return tR) with h tr[tR/x]

(Opxk 7→ tOp) ∈ h

handle (Op tR (y : B.t)) with h tOp[tR/x,(fun (y : B) 7→ handle t with h)/k]

(Opxk 7→ tOp) /∈ h

handle (Op tR (y : B.t)) with h Op tR (y : B.handle t with h)

t t′

t B γ  t′ B γ

tR B 〈Unit〉 tR (return tR)B (comp γ) return (tR B γ)

(Op tR (y : B.t))B (comp γ) Op tR (y : B.(t B (comp γ)))

tR B return γ  return (tR B γ) (return tR)B (unsafe γ) tR B γ

(tR B (γ1→ γ2)) t (tR (t B γ1))B γ2

handle tR1 with (tR2 B (γ1V γ2)) (handle (tR1 B γ1) with tR2 )B γ2

(tR1 B (handToFun γ1 γ2)) tR2  (handle (return (tR2 B γ1)) with tR1 )B γ2

handle (Op tR1 (y : B.t)) with (tR2 B (funToHand γ1 γ2))

 Op tR1 (y : B.handle t with (tR2 B (funToHand γ1 γ2)))

handle (return tR1 ) with (t
R
2 B (funToHand γ1 γ2)) (tR2 (tR1 B γ1))B γ2

(tR B ∀α.γ) A (tR A)B γ[A/α] (tR B (π ⇒ γ1)) γ2 (tR γ2)B γ1

Fig. E 1: NOEFF Operational Semantics



ZU064-05-FPR article 29 May 2020 10:32

Explicit Effect Subtyping 57

Γ̀ Γ Γ′ Typing Environment Elaboration

Γ̀ ε  ε

Γ̀ Γ Γ
′

Γ̀ Γ,ς  Γ
′

Γ̀ Γ Γ
′

Γ̀ Γ,α : τ  Γ
′,α

Γ̀ Γ Γ
′

Γ̀ Γ,δ  Γ
′

Γ̀ Γ Γ
′

Γ T̀ T : τ  A

Γ̀ Γ,x : T Γ,x : A

Γ̀ Γ Γ
′

Γ T̀ T1 : τ  A Γ T̀ T2 : τ  B

Γ̀ Γ,ω : T1 6 T2 Γ
′,ω : A6 B

Γ̀ Γ Γ
′

Γ C̀ C1 : τ  A Γ C̀ C2 : τ  B

Γ̀ Γ,ω : C1 6 C2 Γ
′,ω : A6 B

Γ̀ Γ Γ
′

Γ ∆̀ ∆1 Γ ∆̀ ∆2

Γ̀ Γ,ω : ∆1 6 ∆2 Γ
′

Fig. F 1: Elaboration of EXEFF Typing Environments to NOEFF Typing Environments
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Γ c̀o γ : π  γ ′ Coercion Elaboration

(ω : π) ∈ Γ

Γ c̀o ω : π  ω Γ c̀o 〈Unit〉 : Unit6 Unit 〈Unit〉
(α : τ) ∈ Γ

Γ c̀o 〈α〉 : α 6 α  〈α〉

Γ c̀o γ1 : T2 6 T1 γ
′
1 Γ c̀o γ2 : C1 6 C2 γ

′
2

Γ c̀o γ1→ γ2 : (T1→ C1)6 (T2→ C2) γ
′
1→ γ

′
2

Γ c̀o γ1 : T2 ! /06 T1 ! /0 γ
′
1 Γ c̀o γ2 : C1 6 C2 γ

′
2

Γ c̀o γ1V γ2 : (T1 ! /0V C1)6 (T2 ! /0V C2) γ
′
1→ γ

′
2

nonEmpty(∆1) nonEmpty(∆2)

Γ c̀o γ1 : (T2 ! ∆2 6 T1 ! ∆1) γ
′
1 Γ c̀o γ2 : T ′1 6 T ′2 γ

′
2 Γ c̀o γ3 : ∆

′
1 6 ∆

′
2

Γ c̀o (γ1V (γ2 ! γ3)) : ((T1 ! ∆1)V (T ′1 ! ∆
′
1))6 ((T2 ! ∆2)V (T ′2 ! ∆

′
2)) γ

′
1V comp γ

′
2

nonEmpty(∆1)

Γ c̀o γ1 : T2 6 T1 γ
′
1 Γ c̀o γ2 : T ′1 6 T ′2 γ

′
2 Γ c̀o γ3 : /06 ∆1 Γ c̀o γ4 : /06 ∆

′
2

Γ c̀o (γ1 ! γ3V γ2 ! γ4) : ((T1 ! ∆1V T ′1 ! /0)6 (T2 ! /0V T ′2 ! ∆
′
2)) handToFun γ

′
1 (unsafe γ

′
2)

nonEmpty(∆1) nonEmpty(∆′1)
Γ c̀o γ1 : T2 6 T1 γ

′
1 Γ c̀o γ2 : (T ′1 6 T ′2) γ

′
2 Γ c̀o γ3 : /06 ∆1 Γ c̀o γ4 : ∆

′
1 6 ∆

′
2

Γ c̀o (γ1 ! γ3V γ2 ! γ4) : ((T1 ! ∆1V T ′1 ! ∆
′
1)6 (T2 ! /0V T ′2 ! ∆

′
2)) handToFun γ

′
1 γ
′
2

Γ,ς c̀o γ : T1 6 T2 γ
′

Γ c̀o ∀ς .γ : ∀ς .T1 6 ∀ς .T2 γ
′

Γ τ̀ τ Γ,α : τ c̀o γ : T1 6 T2 γ
′

Γ c̀o ∀(α : τ).γ : ∀(α : τ).T1 6 ∀(α : τ).T2 ∀α.γ ′

Γ,δ c̀o γ : T1 6 T2 γ
′

Γ c̀o ∀δ .γ : ∀δ .T1 6 ∀δ .T2 γ
′

Γ c̀o γ : T1 6 T2 γ
′

Γ T̀ T3 : τ  A1 Γ T̀ T4 : τ  A2

Γ c̀o (T3 6 T4)⇒ γ : ((T3 6 T4)⇒ T1)6 ((T3 6 T4)⇒ T2) (A1 6 A2)⇒ γ
′

Γ c̀o γ : T1 6 T2 γ
′

Γ C̀ C1 : τ  B1 Γ C̀ C2 : τ  B2

Γ c̀o (C1 6 C2)⇒ γ : ((C1 6 C2)⇒ T1)6 ((C1 6 C2)⇒ T2) (B1 6 B2)⇒ γ
′

Γ c̀o γ : T1 6 T2 γ
′

Γ c̀o (∆1 6 ∆2)⇒ γ : (∆1 6 ∆2)⇒ T1 6 (∆1 6 ∆2)⇒ T2 γ
′

Γ c̀o γ1 : T1 6 T2 γ
′
1 Γ c̀o γ2 : /06 /0

Γ c̀o (γ1 ! γ2) : (T1 ! /06 T2 ! /0) γ
′
1

Γ c̀o γ1 : T1 6 T2 γ
′
1

Γ c̀o γ2 : /06 ∆2 nonEmpty(∆2)

Γ c̀o (γ1 ! γ2) : (T1 ! /06 T2 ! ∆2) return γ
′
1

Γ c̀o γ1 : T1 6 T2 γ
′
1 Γ c̀o γ2 : ∆1 6 ∆2 nonEmpty(∆1) nonEmpty(∆2)

Γ c̀o (γ1 ! γ2) : (T1 ! ∆1 6 T2 ! ∆2) comp γ
′
1

Fig. F 2: Elaboration of EXEFF Coercions to NOEFF Coercions
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Γ v̀ v : T t Value Elaboration

Γ v̀ unit : Unit unit

Γ T̀ T : τ  A Γ,x : T c̀ c : C t

Γ v̀ fun (x : T) 7→ c : T→ C fun (x : A) 7→ t

Γ T̀ T : τ  A Γ,x :T c̀ cr : C t

Γ v̀ {return (x : T) 7→ cr} : T ! /0V C fun (x : A) 7→ t

nonEmpty(O) Γ T̀ Tx : τ  A Γ,x :Tx c̀ cr : T ! /0 tr[
(Op : TOp

1 → TOp
2 ) ∈ Σ T̀ TOp

i : τ
Op
i  AOp

i Γ,x : TOp
1 ,k : TOp

2 → T ! /0 c̀ cOp : T ! /0 tOp
]
Op∈O

Γ v̀ {return (x : Tx) 7→ cr, [Opxk 7→ cOp]Op∈O} : Tx ! O V T ! /0

 {return (x : A) 7→ return tr,
[
Opxk 7→ return tOp[k B 〈AOp

1 〉 → unsafe 〈AOp
2 〉/k]

]
Op∈O}

nonEmpty(O) nonEmpty(∆) Γ T̀ Tx : τ  A Γ,x :Tx c̀ cr : T ! ∆ tr[
(Op : TOp

1 → TOp
2 ) ∈ Σ Γ,x : TOp

1 ,k : TOp
2 → T !∆ c̀ cOp : T !∆ tOp

]
Op∈O

Γ v̀ {return (x : Tx) 7→ cr, [Opxk 7→ cOp]Op∈O} : Tx ! O V T ! ∆ {return (x : A) 7→ tr, [Opxk 7→ tOp]Op∈O}

Γ,ς v̀ v : T t

Γ v̀ Λς .v : ∀ς .T t

Γ v̀ v : ∀ς .T t

Γ v̀ v τ : T[τ/ς ] t

Γ,α : τ v̀ v : T t

Γ v̀ Λ(α : τ).v : ∀(α : τ).T Λα.t

Γ v̀ v : ∀(α : τ).T t
Γ T̀ T1 : τ  A

Γ v̀ v T1 : T[T1/α] t A

Γ,δ v̀ v : T t

Γ v̀ Λδ .v : ∀δ .T t

Γ v̀ v : ∀δ .T t
δ 7→ ∆;Γ v̀ T γ

Γ v̀ v ∆ : T[∆/δ ] t B γ

Γ,ω : T1 6 T2 v̀ v : T t Γ T̀ T1 : τ  A Γ T̀ T2 : τ  B

Γ v̀ Λ(ω : T1 6 T2).v : (T1 6 T2⇒ T) Λ(ω : A6 B).t

Γ,ω : C1 6 C2 v̀ v : T t Γ C̀ C1 : τ  A Γ C̀ C2 : τ  B

Γ v̀ Λ(ω : C1 6 C2).v : (C1 6 C2⇒ T) Λ(ω : A6 B).t

Γ,ω : ∆1 6 ∆2 v̀ v : T t

Γ v̀ Λ(ω : ∆1 6 ∆2).v : (∆1 6 ∆2⇒ T) t

Γ v̀ v : (T1 6 T2)⇒ T t
Γ c̀o γ : T1 6 T2 γ

′

Γ v̀ v γ : T t γ
′

Γ v̀ v : (C1 6 C2)⇒ T t
Γ c̀o γ : C1 6 C2 γ

′

Γ v̀ v γ : T t γ
′

Γ v̀ v : (∆1 6 ∆2)⇒ T t
Γ c̀o γ : ∆1 6 ∆2

Γ v̀ v γ : T t

Γ v̀ v : T1 t
Γ c̀o γ : T1 6 T2 γ

′

Γ v̀ vB γ : T2 t B γ
′

Fig. F 3: Elaboration of EXEFF Values to NOEFF Terms


