
Crème de la Crem: Composable Representable
Executable Machines

Architectural Pearl
Marco Perone
Treviso, Italy

pasafama@gmail.com

Georgios Karachalias
Tweag

Paris, France
georgios.karachalias@tweag.io

Abstract
In this paper we describe how to build software architectures
as a composition of statemachines, using ideas and principles
from the field of Domain-Driven Design. By definition, our
approach is modular, allowing one to compose independent
subcomponents to create bigger systems, and representable,
allowing the implementation of a system to be kept in sync
with its graphical representation.

In addition to the design itself we introduce the Crem
library, which provides a concrete state machine implemen-
tation that is both compositional and representable. Crem
uses Haskell’s advanced type-level features to allow users to
specify allowed and forbidden state transitions, and to en-
code complex statemachine—and therefore domain-specific—
properties. Moreover, since Crem’s state machines are repre-
sentable, Crem can automatically generate graphical repre-
sentations of systems from their domain implementations.

CCS Concepts: • Hardware→ Finite state machines; •
Software and its engineering→ Software design engi-
neering.

Keywords: domain architecture, domain-driven design, state
machine

ACM Reference Format:
Marco Perone and Georgios Karachalias. 2023. Crème de la Crem:
Composable Representable Executable Machines: Architectural
Pearl. In Proceedings of the 1st ACM SIGPLAN International Work-
shop on Functional Software Architecture (FUNARCH ’23), Septem-
ber 8, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3609025.3609480

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
FUNARCH ’23, September 8, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0297-6/23/09. . . $15.00
https://doi.org/10.1145/3609025.3609480

1 Introduction
Tactical Domain-Driven Design focuses on identifying trans-
actional boundaries and is often combined with an event-
based architecture [Stopford 2018], which is based on the
flow of messages (e.g. commands and events) throughout an
application domain and the clear separation of responsibili-
ties among several components (e.g. aggregates, policies and
projections).

Such separation often allows to fruitfully discuss with non-
technical domain experts the details of the inner workings of
the domain itself and to translate them directly into working
code. Moreover, as the understanding of the domain deepens
as time passes, the architecture itself allows for refactorings
towards deeper insights.

Still, terms and concepts like aggregates, policies and pro-
jections lack a precise definition and delimitation, and this
tends to create discussions and confusion.
Another issue we experienced developing systems using

Domain-Driven Design techniques is the distance which
appears between the theoretical model developed through
distilling knowledge from the domain experts and the con-
crete implementation of such a model. This is basically the
same issue which happens with stale documentation, where
the documentation of a piece of code is not up-to-date with
the current behaviour of the code itself.

With the work described in this paper we try to mitigate
these issues bringing together ideas from Domain-Driven
Design, state machines and functional programming, ex-
pressing DDD and event-based architectures in terms of
state machines using Haskell.

The main novel contributions of this paper are:

• Using state machines to implement policies and pro-
jections, building on top of the existing knowledge of
treating aggregates as state machines [Ploch 2022].
This allows to use state machines as the unique under-
lying concept needed to implement a whole applica-
tion domain.
Moreover, such an approachmakes it all compositional,
since state machines compose extremely well.

• Implementing state machines, and therefore architec-
tures based on them, in such a way that information

https://orcid.org/0000-0002-1004-0431
https://orcid.org/0009-0008-3071-7842
https://doi.org/10.1145/3609025.3609480
https://doi.org/10.1145/3609025.3609480

FUNARCH ’23, September 8, 2023, Seattle, WA, USA Perone and Karachalias

could be extracted from the implementation and used
as documentation of the system.
Specifically, we are able to generate a graphical rep-
resentation out of the domain implementation which
describes the relevant information about the domain
itself. This is extremely helpful when discussing the be-
haviour of the domain with domain experts, removing
the need for understanding and explaining the bare
code behaviour.
The ability of generating a graphical representation
out of a state machine was already available with mo-
tor [Wickström 2019]. Whilemotor is focused on build-
ing single state machines, this article and the Crem
library improve the situation introducing composi-
tionality.

• Making explicit the connection between an abstract
model and its concrete implementation via a novel
combination of Domain-Driven Design ideas and state
machines.

• Using Haskell’s powerful type system to encode com-
plex properties of the implemented state machines,
and therefore of the domains they represent.
With Cremwe are able to express explicitly which state
transitions are allowed and which, on the other hand,
are forbidden.
Using Haskell we are able to get access both to features
mimicking dependent types, needed for the whole ma-
chinery to work, and also to the whole ecosystem of
production-ready libraries and frameworks.

For example, with Crem we can create systems, with an
architecture based on Domain-Driven Design principles, just
by composing state machines as follows

wholeCartDomain :: StateMachine CartCommand [CartView]
wholeCartDomain = Kleisli

(Feedback cart paymentGateway)
paymentStatus

and generate a graphical representation describing the im-
plemented system (see Figure 7).

2 Domain-Driven Design
Domain-driven design, as a community and as a practice,
aims to build software for complex domains creating a shared
understanding of the domain and expressing it in a model,
which describes the problem space [Verraes 2021].

One popular shape of such models, which emerges natu-
rally from Event Storming workshops [Brandolini 2015], is
rooted in ideas such as Aggregates [Evans 2003], Event Sourc-
ing [Young 2007]1 and CQRS [Young 2010] and is captured
in Figure 1.

1Notice that the architecture that we describe in the paper is very well suited
for Event Sourcing, but does not rely on it and is actually independent of
how persistence is dealt with

Figure 1. Domain-Driven Design Model. Arrow direction
denotes the flow on information. Solid arrows describe soft-
ware interactions, while dotted ones refer to human ones.
Square boxes represent data types, while rounded ones rep-
resent processes.

The flow of such an architecture goes as follows:
• A user expresses their desired interaction with the soft-
ware with a Command, comprising all the necessary
information to execute that command.

• The Command is received by an Aggregate, which has
the role of making sure that every invariant of the
system is preserved. Then, it emits its decisions as
Events.

• Events describe the relevant state transitions of the
system, containing all the data necessary to propagate
information through the system and potentially to
reconstruct the current state of the system.

• Policies describe the reactive logic of the application.
Whenever an Event is emitted by an Aggregate, the
system might decide to react to it emitting a new Com-
mand.

• Projections aggregate the information contained in the
Events and condensate them into specialised Views.

• Views describe the information which are then shown
to and used by the user to decide which Command
they should require next.

We will henceforth use the colors used for defining the
termswhenever there is an instance of this term. For example,
as Aggregate is colored red2, the Cart aggregate will also be
red.
As a recurring example, we will consider the checkout

process of a standard ecommerce systems. In such a context,
a user emits a PayCart command instructing the system to
process the payment of their cart. The Cart aggregate will
check all the system invariants to ensure that the cart is in a
state where it could actually be paid (e.g. it is not empty); if
every invariant is satisfied, the aggregate will emit a CartPay-
mentInitiated event. A PaymentGateway policy will contact
an external system to actually process the payment; if the
2Traditionally in EventStorming aggregates are yellow, but it doesn’t render
well on paper, so we switched to red.

CREM FUNARCH ’23, September 8, 2023, Seattle, WA, USA

payment is processed correctly, the policy will emit a Mark-
CartAsPaid command. The command will then be processed
by the Cart aggregate, which will emit a CartPaymentCom-
pleted event. The PaymentStatus projection will react to the
CartPaymentInitiated and CartPaymentCompleted events to
provide the user with a CartState view describing the current
state of the payment.

Aggregates and projections are by their nature pure state-
ful processes, meaning that the only effect which can take
place is state management. In particular their logic does not
depend on the interaction with the external world. All the rel-
evant information for making sensible decisions is contained
either in their state or provided by the incoming messages.
On the other hand, policies are by nature impure, since

they often deal with interacting with external systems.
The cycle which get created between aggregates and poli-

cies helps to split the write side of the domain logic between
its pure and its effectful parts, increasing the testability of
the system.

3 State machines
In the architecture described above, while commands, events
and views are just simple data, on the other hand aggregates,
policies and projections are stateful processes. As such, they
could be implemented as state machines. By state machine
we always mean a Mealy machine [Mealy 1955], which is
composed of a stateful function and the current value for the
state. Practically, it consists of the current value of the state
and an action to emit an output determined from an input
and the current value of the state, while being able to update
the state.
In Haskell terms, one potential implementation could be

the following.

data Mealy 𝑠 𝑎 𝑏 = Mealy
{ initialState :: 𝑠
, action :: 𝑠 → 𝑎 → (𝑏, 𝑠)
}

State machines come with many practical benefits:

• They are extremely compositional and allow combin-
ing simple state machines into more complex ones in
several ways.
For examples, two machines could be composed se-
quentially, feeding the output of the first machines as
inputs of the second.
Or they could be executed in parallel, providing the
inputs to both machines and collecting their outputs.
Or they could be executed in alternative, providing
either the input to the first machine or the input the
second, executing the corresponding machine, and ob-
taining as output either the output of the first machine
or the output of the second.

data CartCommand
= PayCart
| MarkCartAsPaid

data CartEvent
= CartPaymentInitiated
| CartPaymentCompleted

data CartState
= WaitingForPayment
| InitiatingPayment
| PaymentComplete

cart :: Mealy CartState CartCommand [CartEvent]
cart = Mealy

{ initialState = WaitingForPayment
, action = \case

WaitingForPayment PayCart →
([CartPaymentInitiated], InitiatingPayment)

WaitingForPayment MarkCartAsPaid →
([],WaitingForPayment)

InitiatingPayment PayCart →
([], InitiatingPayment)

InitiatingPayment MarkCartAsPaid →
([CartPaymentCompleted], PaymentComplete)

PaymentComplete PayCart →
([], PaymentComplete)

PaymentComplete MarkCartAsPaid →
([], PaymentComplete)

}

Figure 2. Cart Implementation, Simplified

• They allow a graphical representation as state dia-
grams, which could help to understand how a machine
actually works also for non-technical people.

• They can be implemented as a function depending
just on the input and the state. The simplicity of this
mental model helps the implementor considering all
the possible cases which need to be considered and
uncovering potential edge cases.

For example, the Cart aggregate of the previous section
could be implemented along these lines; see Figure 2.

This is a very simplified version, which does not perform
any sophisticated logic on duplicate or unexpected messages,
but still it gives the idea of how the domain logic could be
implemented.
In real systems, one will have to deal with multiple ag-

gregates, handling different kinds of commands. Since there
will be only one aggregate to deal with a given command, we
can compose several aggregates in parallel to obtain a bigger
component able to deal with multiple kinds of commands.
Then, when we receive a command, we will need to route it
to the correct component to be dealt with.

FUNARCH ’23, September 8, 2023, Seattle, WA, USA Perone and Karachalias

Similarly, we can compose multiple policies or projects to
put ourselves back in the case when we have a single policy
or projection.

4 Crem
The architecture we described in the Domain-Driven De-
sign section could be implemented as a composition of state
machines. Aggregates, policies and projections get imple-
mented as state machines, which then get composed into a
unique state machine which describes the whole domain of
the application.
To benefit from the above described perks of both the

architecture and state machines we need a way to implement
a domain with state machines which is compositional and
allows synchronising a graphical representation of the state
machines with the actual implemented code.

Crem is a Haskell library for defining and executing state
machines in such a way that the theoretical benefits of state
machines, as compositionality and representability, are prac-
tically preserved.

It allows to:

• Compose state machines in multiple ways.
• Generate a graphical representation out of the imple-
mentation of a state machine.

• Impose invariants on the allowed transitions.

Crem is based on two main ideas: tracking the set of the
allowed transitions at the type level and using a free-like
structure to restore compositionality.
Let’s see how these two ideas play really well together

and why both have a relevant role in the implementation.
A simple definition of a state machine that is parametric

over the type of its state 𝑠 , as well as input and output types
𝑎 and 𝑏, respectively, could look like the following:

data Mealy 𝑠 𝑎 𝑏 = Mealy
{ initialState :: 𝑠
, action :: 𝑠 → 𝑎 → (𝑏, 𝑠)
}

By making the state type implicit, one ends up with Mealy
as is defined in the machines library [Kmett et al. 2012]:3

newtype Mealy 𝑎 𝑏 = Mealy
{ runMealy :: 𝑎 → (𝑏, Mealy 𝑎 𝑏)
}

This allows improving the compositionality of the data type,
since now there is no need to keep track of the state type vari-
able, and it is possible to implement instances for common
type classes like Category, Profunctor and Arrow.
On the other hand, these simple implementations do not

allow to extract any information about how the statemachine
works, without actually executing the state machine itself.
Being just functions, the only thing we can do with them is
running them.

In particular, we have no way to extract information about
which transitions are allowed or not by the state machine,
and therefore we are not able to generate a graphical repre-
sentation which describes how the machine works.
To be able to enforce which state transitions are actually

allowed and to generate a graphical representation of the
state space, we need to track the list of allowed transitions,
which we call Topology.

newtype Topology vertex = Topology
{ edges :: [(vertex, [vertex])]
}

The Topology is a list of edges, grouped by their initial vertex.
Coming back to our example, the Topology of the Cart

aggregate could look as follows:

data CartVertex
= WaitingForPaymentVertex
| InitiatingPaymentVertex
| PaymentCompleteVertex

cartTopology :: Topology CartVertex
cartTopology =

[(WaitingForPaymentVertex, [InitiatingPaymentVertex])
, (InitiatingPaymentVertex, [PaymentCompleteVertex]
, [PaymentCompleteVertex, []])
]

3This transformation can be perceived as two separate steps:
1. First turn the 𝑠 into an existentially quantified type variable:

data Mealy′ 𝑎 𝑏 = forall 𝑠. Mealy′

{ initialState :: 𝑠
, action :: 𝑠 → 𝑎 → (𝑏, 𝑠)
}

2. Then use recursion to eliminate the state variable altogether (see
unfoldMealy from the machines library [Kmett et al. 2012]):

unfoldMealy :: Mealy′ 𝑎 𝑏 → Mealy 𝑎 𝑏

unfoldMealy (Mealy′ initial action) = go initial where
go 𝑠 = Mealy $ \𝑎 → case action 𝑠 𝑎 of

(𝑏, 𝑡) → (𝑏, go 𝑡)

CREM FUNARCH ’23, September 8, 2023, Seattle, WA, USA

data InitialState (state :: vertex → Type) where
InitialState :: state vertex → InitialState state

data ActionResult
(topology :: Topology vertex)
(state :: vertex → Type)
(initialVertex :: vertex)
output

where
ActionResult
:: AllowedTransition topology initialVertex finalVertex
⇒ (output, state finalVertex)
→ ActionResult topology state initialVertex output

data BaseMachine
(topology :: Topology vertex)
input
output = forall state.

BaseMachine
{ initialState :: InitialState state
, action

:: forall initialVertex .
state initialVertex
→ input
→ ActionResult topology state initialVertex output

}

Figure 3. State Machines, Revisited

By storing the Topology at the type level we are able to use
it for enforcing at compile time that forbidden transitions
are never executed. Having an explicit Topology allows to
retrieve the information later on to create a graphical repre-
sentation of the state machine out of it. In this way, we are
sure that the generated graphical representation is always
in sync with the implemented logic of the state machine.
One possible way to implement such a mechanism is de-

picted in Figure 3.
AllowedTransition topology initialVertex finalVertex, which

is implemented as in Figure 4, is a type class which checks
that a transition from initialVertex to finalVertex is allowed
by the topology. It searches through all the edges of the
Topology whether there is one starting from initialVertex and
ending at finalVertex, and it constructs a proof of it using the
AllowTransition data type.
The InitialState and ActionResult data types are respec-

tively ways to store a state and a pair of a state and an output,
given the fact that the state does not have kind Type but kind
vertex → Type.
With these new data types, the Cart aggregate could be

adjusted accordingly. The updated implementation is shown
in Figure 5.
Even though the implementation looks completely anal-

ogous to the previous version using the Mealy data type,

data AllowTransition
(topology :: Topology vertex)
(initial :: vertex)
(final :: vertex)

where
AllowIdentityEdge

:: AllowTransition topology a a
AllowFirstEdge

:: AllowTransition (′Topology (′ (a, b ′: l1) ′: l2)) a b
AllowAddingEdge

:: AllowTransition (′Topology (′ (a, l1) ′: l2)) a b
→ AllowTransition

(′Topology (′ (a, x ′: l1) ′: l2)) a b
AllowAddingVertex

:: AllowTransition (′Topology topology) a b
→ AllowTransition (′𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦 (x ′: topology)) a b

class AllowedTransition
(topology :: Topology vertex)
(initial :: vertex)
(final :: vertex)

where
allowsTransition

:: AllowTransition topology initial final

instance{−# INCOHERENT #−}
AllowedTransition topology a a

where
allowsTransition = AllowIdentityEdge

instance{−# INCOHERENT #−}
AllowedTransition (′Topology (′ (a, b ′: l1) ′: l2)) a b

where
allowsTransition = AllowFirstEdge

instance{−# INCOHERENT #−}
AllowedTransition (′Topology (′ (a, l1) ′: l2)) a b) ⇒
AllowedTransition (′Topology (′ (a, x ′: l1) ′: l2)) a b

where
allowsTransition = AllowAddingEdge allowsTransition

instance{−# INCOHERENT #−}
AllowedTransition (′Topology topology) a b ⇒
AllowedTransition (′𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦 (x ′: topology)) a b

where
allowsTransition = AllowAddingVertex allowsTransition

Figure 4. AllowedTransition implementation

we are now ensuring at compile time that the machine will
never use a transition which is not allowed by the Topology.

The BaseMachine data type allows us to track at the type
level the information regarding the Topology of the machine.

FUNARCH ’23, September 8, 2023, Seattle, WA, USA Perone and Karachalias

data CartState (cartVertex :: CartVertex) where
WaitingForPayment :: CartState WaitingForPaymentVertex
InitiatingPayment :: CartState InitiatingPaymentVertex
PaymentComplete :: CartState PaymentCompleteVertex

cart :: BaseMachine CartTopology CartCommand [CartEvent]
cart = BaseMachine
{ initialState = InitialState WaitingForPayment
, action = \case
WaitingForPayment PayCart →
ActionResult ([CartPaymentInitiated], InitiatingPayment)

WaitingForPayment MarkCartAsPaid →
ActionResult ([],WaitingForPayment)

InitiatingPayment PayCart →
ActionResult ([], InitiatingPayment)

InitiatingPayment MarkCartAsPaid →
ActionResult ([CartPaymentCompleted], PaymentComplete)

PaymentComplete PayCart →
ActionResult ([], PaymentComplete)

PaymentComplete MarkCartAsPaid →
ActionResult ([], PaymentComplete)

}

Figure 5. Cart Implementation, Revisited

On the other hand, that topology type parameter makes
composition harder, since composing two machines would
require computing at the type level the topology of the com-
posed machine. Moreover, just the presence of that third
type parameter does not allow us to us common type classes
as Category, Profunctor or Arrow.

To restore compositionality, we define a free-like structure
which adds composition operations on top of theBaseMachine
data type, which is presented in Figure 6.

This way, it becomes trivial to implement type classes like
Category, Strong and Choice, in terms of the constructors.
The Sequential constructor allows restoring sequential

categorical composition. The Parallel allows implementing
Arrow and Strong, while the Alternative constructor allows
implementing ArrowChoice and Choice.
The Feedback constructor is used to loop two state ma-

chines, respectively feeding the output of one as input of the
other.

TheKleisli constructor allows composing sequentially two
state machines which produce multiple outputs, while they
process single inputs.

The StateMachine data type helps us construct an abstract
syntax tree where the leaves are BaseMachines and the other
nodes describe how we are composing the subtrees.
Considering our running example, if we suppose now to

have implemented the Cart aggregate, the PaymentGateway

data StateMachine input output where
Basic
:: forall𝑚 vertex topology input output .

(Demote vertex ∼ vertex
, SingKind vertex
, SingI topology
)

⇒ BaseMachine topology input output
→ StateMachine input output

Sequential
:: StateMachine 𝑎 𝑏
→ StateMachine 𝑏 𝑐
→ StateMachine 𝑎 𝑐

Parallel
:: StateMachine 𝑎 𝑏
→ StateMachine 𝑐 𝑑
→ StateMachine (𝑎, 𝑐) (𝑏, 𝑑)

Alternative
:: StateMachine 𝑎 𝑏
→ StateMachine 𝑐 𝑑
→ StateMachine (Either 𝑎 𝑐) (Either 𝑏 𝑑)

Feedback
:: StateMachine a [b]
→ StateMachine b [a]
→ StateMachine a [b]

Kleisli
:: StateMachine a [b]
→ StateMachine b [c]
→ StateMachine a [c]

Figure 6. State Machine Representation

policy and the PaymentStatus projection, like so

cart
:: StateMachine CartCommand [CartEvent]

paymentGateway
:: StateMachine CartEvent [CartCommand]

paymentStatus
:: StateMachine CartEvent [CartView]

we can compose them together to create an implementation
for the whole domain:

wholeCartDomain
:: StateMachine CartCommand [CartView]

wholeCartDomain = Kleisli
(Feedback cart paymentGateway)
paymentStatus

A whole implementation could be found in the examples
folder inside the Crem repository [Perone 2023].

CREM FUNARCH ’23, September 8, 2023, Seattle, WA, USA

Figure 7. Architecture diagram of the cart payment system

From this definition, Crem is able to generate a diagram
that shows how the application is structured, presented in
Figure 7.
From the picture, it’s easy to understand how the cart

aggregate is connected in a loop with the paymentGateway
policy and how the outputs of the loop are then fed as inputs
into the cartState projection.

Inside every box we can also see the topology of the state
space of the state machine controlling that specific compo-
nent.

When we interpret the StateMachine abstract syntax tree,
we need to define how to process the leaves, i.e. theBaseMachines,
and how to interpret the composition of substrees.
For example, when we want to run a StateMachine, we

need to describe how to run a BaseMachine, and this is
provided by the action included in the BaseMachine defi-
nition, and how to run a composition of sub-StateMachines.
This depends on the specific constructor; for example, for
the Sequential constructor, we first recursively run the first
StateMachine, and we use the output as input to run the
second StateMachine.
Similarly, when we want to create a graphical represen-

tation of a StateMachine, we need to be able first to create a
graphical representation of its leaves, which areBaseMachines.
We are able to do that because we have the Topology in-
formation stored at the type level. Then, we also need to
be able to create a graphical representation of a composed
StateMachine given a graphical representation of its sub-
StateMachines. Depending on the used constructor, and on
the graphical representation that we would like to obtain,
we can decide how to represent the composed machine.

5 Extending the architecture
In real-life projects an application is rarely composed by only
one aggregate, one policy, and one projection. To understand

how we can compose multiple aggregates, policies and pro-
jections together to model more complex workflows, we can
use the interface provided by Arrow and ArrowChoice, or,
alternatively, the Profunctor , Strong, and Choice type classes.
Effectively, this means that the composition does not depend
on our use of state machines; composition using another
data type satisfying these type classes would also work in
pretty much the same way.
Let’s continue with our running example and consider

that we would like to automatically start the delivery process
once a payment is completed. As a first step, we introduce a
new aggregate that we implement as a “Basic” state machine:

data ShippingCommand = . . .

data ShippingEvent = . . .

shipping
:: StateMachine ShippingCommand [ShippingEvent]

shipping = Basic . . .

To connect this new aggregate with the rest of the appli-
cation, we want to execute it as an alternative to the cur-
rent write model, meaning that we want to handle either a
CartCommand or a ShippingCommand and route it to the
appropriate machine. We can achieve this using the (+++) op-
erator from ArrowChoice (or, equivalently, splitChoice from
the Choice type class).

writeModelWithShipping :: StateMachine
(Either CartCommand ShippingCommand)
[Either CartEvent ShippingEvent]

writeModelWithShipping = rmap
(fmap Left | | | fmap Right)
(writeModel +++ shipping)

Now we have a way to process both commands concern-
ing the cart payment and the shipping, but there is still no
automatic connection between the two components. We
would like to connect them by specifying that whenever
a payment is completed the shipping process must start.
The word “whenever” indicates that we need to use a pol-
icy, specifically one that consumes CartEvents and produces
ShippingCommands.

paymentCompletePolicy
:: StateMachine CartEvent [ShippingCommand]

paymentCompletePolicy = stateless $ \case
CartPaymentInitiated → []
CartPaymentCompleted → [StartShipping]

We now need to connect our new paymentCompletePol-
icy policy to our writeModelWithShipping machine. Policies
are always connected via the Feedback constructor of the
StateMachine data type. To use it, we need to align the types

FUNARCH ’23, September 8, 2023, Seattle, WA, USA Perone and Karachalias

by ignoring some inputs and enlarging the return type:
writeModelWithShipping′ :: StateMachine

(Either CartCommand ShippingCommand)
[Either CartEvent ShippingEvent]

writeModelWithShipping′ =
Feedback writeModelWithShipping $
rmap (fmap Right) paymentCompletePolicy

| | | stateless (const [])
Next, we need another projection to provide the user with
some queryable information about the status of the shipping.
It is a process which consumes ShippingEvents and produces
some new ShippingInfo value:
shippingInfo :: StateMachine ShippingEvent [ShippingInfo]
The only thing that remains to be done is connecting the
machine (writeModelWithShipping′) and the two projections
(paymentStatus and shippingInfo). We first pair up the pro-
jections to set up our read model and then we link it to our
write model in a sequential fashion:

readModel :: StateMachine
(Either CartEvent ShippingEvent)
[Either CartView ShippingInfo]

readModel = rmap
(fmap Left | | | fmap Right)
(paymentStatus +++ shippingInfo)

cartAndShipping :: StateMachine
(Either CartCommand ShippingCommand)
[Either CartView ShippingInfo]

cartAndShipping =

Kleisli writeModelWithShipping′ readModel

6 Future work
Some possible directions for future work on the subject could
be:

• The Feedback constructor of the StateMachine data
type is used to implement looping behaviour. Clas-
sically, such behaviour is implemented in terms of the
ArrowLoop or Costrong type classes. It would be inter-
esting to investigate the relation between Feedback and
such type classes, potentially removing the Feedback
constructor from the StateMachine data type and re-
placing it with a constructor more similar to the loop
or unfirst functions coming from the aforementioned
type classes.

• The Sequential and Kleisli constructors both deal with
sequential composition of state machines. It would be
interesting to find a way to unify them.

• With the current implementation, we are tracking at
the type level only a list of the allowed state transi-
tions. There is no connection between the allowed
transitions and the inputs which trigger them. In other
words, we are not restricting in any way the inputs

that we could receive in a given state. It would be inter-
esting to implement a way to express that in a certain
state only certain inputs are valid.
This would allow stating explicitly which are the ex-
pected inputs in a given state when implementing a
state machine, avoiding the need to implement error
handling for such unwanted cases.

• The current implementation of Crem does not take
advantage of any concurrency or parallelism. In cases
where a state machine is actually composed of multiple
sub-machines in parallel, it could be interesting to
allow running them on separate threads to improve
the execution time.

• In the spirit of parallelising as much as possible a given
machine, or anyway optimizing it in other ways, it
could make sense to introduce an optimization step
whichwould restructure the abstract syntax treewhich
constitutes a StateMachine. Simple optimizations could
be given by the algebraic structure provided by the
categorial structure; for example any identity machine
composed sequentially could be removed; or it would
be possible to use the distributive law between sequen-
tial and parallel composition to improve the parallelis-
ability of a machine.

Another potential area of future development concerns
how to test systems built with Crem and/or with the archi-
tecture described in the Domain-Driven Design section.
Some potential aspects to investigate in that area could

be:

• Using a compositional library like Crem, the Domain-
Driven Design architecture described above could be
implemented as a single state machine receiving com-
mands as inputs and emitting views as outputs.
One way to test such a system would be to proceed
with unit testing, treating the whole domain as a unit,
feeding commands to it and asserting the expected
state on the view observed by the user.

• Another way to test such a system would be to use
property-based testing, generating commands randomly
and making assertions on the invariants of the views.
A potential direction on investigation could be using
something like linear temporal logic to provide a lan-
guage to express system invariants, along the lines to
what has been done with Quickstrom [O’Connor and
Wickström 2022].

• Pushing it even further, we can notice that our domain
and the user (in fact, any external system interacting
with our system) together form a cycle. Therefore, if
we implement our user as a state machine (potentially
an effectful or probabilistic one) receiving views and
producing commands, we could close the loop and let
our application run as long as we like. At this point

CREM FUNARCH ’23, September 8, 2023, Seattle, WA, USA

we could use this new complete system to test the
invariants of the domain.

• Another way in which such a system could potentially
be tested would be to use languages like TLA+ or Al-
loy. A model could be exported using the information
stored in the topology of the machine. Then it could
be tested and verified using the chosen specification
language.

7 Conclusion
We believe that compositionality and representability consti-
tutes two extremely important aspects for the success of a
software architecture. The former because it allows tackling
simpler problems and then composing back their solutions
to obtain solutions for more complex problems. The latter
because it allows an easier interaction between business and
domain experts and software developers.
Crem makes it easy to keep the graphical representation

synchronised with the implementation, providing a reliable
source of graphical documentation.
Inspired by Domain-Driven Design and thanks to the

Haskell type system we were able to create the Crem library,
which allows architecting systems in a composable and rep-
resentable way, without sacrificing the developer experience
while implementing such systems.

Moreover, the architecture we propose helps to clarify the
role of the various components commonly used in a Domain-
Driven Design architecture, describing more precisely which
is their role inside the domain.

Acknowledgments
We would like to thank the reviewers of FUNARCH ’23 for
their constructive comments, and especially Michael Sperber
for shepherding the editing process; our paper is all the better
for their thorough feedback and suggestions.

The initial development of the Crem library happened
while both authors were employed by Tweag.

The first author would also like to thank his former col-
leagues Richard Eisenberg, Alexis King, Sjoerd Visscher,
Alexander Esgen, Nicolas Frisby and Daniele Palombi for
the fruitful discussions and the feedback on the Crem library.
Moreover, he would like to thank his former colleague Alexei
Drake for the fruitful collaboration in setting up a develop-
ment environment for Crem using Nix.

References
Alberto Brandolini. 2015. Introducing EventStorming. Leanpub, 1321 Blan-

shard Street, Suite 301, Victoria, British Columbia, Canada, V8W 0B6.
Eric Evans. 2003. Domain-Driven Design. Addison-Wesley, Reading, MA.
Edward A. Kmett, Rúnar Bjarnason, and Josh Cough. 2012. machines:

Networked stream transducers. https://hackage.haskell.org/package/
machines

George H. Mealy. 1955. A Method for Synthesizing Sequential Circuits. Bell
System Technical Journal 34, 5 (1955), 1045–1079.

Liam O’Connor and Oskar Wickström. 2022. Quickstrom: property-based
acceptance testing with LTL specifications. PLDI 2022: Proceedings of the
43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (2022), 1025–1038.

Marco Perone. 2023. A Cart example with Crem. https://github.com/
marcosh/crem/tree/main/examples/Crem/Example/Cart

Thomas Ploch. 2022. DDD Aggregates: Processes, State Machines and
Transducers. https://t-pl.io/ddd-aggregates-processes-state-machines-
and-transducers

Ben Stopford. 2018. Designing Event-Driven Systems. O’Reilly, 1005 Graven-
stein Highway North, Sebastopol, CA 95472.

Mathias Verraes. 2021. What is Domain-Driven Design. https://verraes.
net/2021/09/what-is-domain-driven-design-ddd/

OskarWickström. 2019. motor: Type-safe effectful state machines in Haskell.
https://hackage.haskell.org/package/motor

Greg Young. 2007. The Architecture of a Large Transaction Sys-
tem. https://www.infoq.com/interviews/Architecture-Eric-Evans-
Interviews-Greg-Young/

Greg Young. 2010. CQRS Documents. https://cqrs.files.wordpress.com/
2010/11/cqrs_documents.pdf

Received 2023-06-01; accepted 2023-06-28

https://hackage.haskell.org/package/machines
https://hackage.haskell.org/package/machines
https://github.com/marcosh/crem/tree/main/examples/Crem/Example/Cart
https://github.com/marcosh/crem/tree/main/examples/Crem/Example/Cart
https://t-pl.io/ddd-aggregates-processes-state-machines-and-transducers
https://t-pl.io/ddd-aggregates-processes-state-machines-and-transducers
https://verraes.net/2021/09/what-is-domain-driven-design-ddd/
https://verraes.net/2021/09/what-is-domain-driven-design-ddd/
https://hackage.haskell.org/package/motor
https://www.infoq.com/interviews/Architecture-Eric-Evans-Interviews-Greg-Young/
https://www.infoq.com/interviews/Architecture-Eric-Evans-Interviews-Greg-Young/
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf

	Abstract
	1 Introduction
	2 Domain-Driven Design
	3 State machines
	4 Crem
	5 Extending the architecture
	6 Future work
	7 Conclusion
	Acknowledgments
	References

